85 research outputs found

    Early Mechanical Alterations in Phospholamban Mutation Carriers: Identifying Subclinical Disease Before Onset of Symptoms

    Get PDF
    OBJECTIVES: This study aimed to explore echocardiographic characteristics of phospholamban (PLN) p.Arg14del mutation carriers to investigate whether structural and/or functional abnormalities could be identified before onset of symptoms. BACKGROUND: Carriers of the genetic PLN p.Arg14del mutation may develop arrhythmogenic and/or dilated cardiomyopathy. Overt disease is preceded by a pre-symptomatic phase of variable length in which disease expression seems to be absent. METHODS: PLN p.Arg14del mutation carriers with an available echocardiogram were included. Mutation carriers were classified as pre-symptomatic if they had no history of ventricular arrhythmias (VAs), a premature ventricular complex count of <500/24 h, and a left ventricular (LV) ejection fraction of ≥45%. In addition, we included 70 control subjects with similar age and sex distribution as the pre-symptomatic mutation carriers. Comprehensive echocardiographic analysis (including deformation imaging) was performed. RESULTS: The final study population consisted of 281 PLN p.Arg14del mutation carriers, 139 of whom were classified as pre-symptomatic. In comparison to control subjects, pre-symptomatic mutation carriers had lower global longitudinal strain and higher LV mechanical dispersion (both p < 0.001). In addition, post-systolic shortening (PSS) in the LV apex was observed in 43 pre-symptomatic mutation carriers (31%) and in none of the control subjects. During a median follow-up of 3.2 years (interquartile range: 2.1 to 5.6 years) in 104 pre-symptomatic mutation carriers, nonsustained VA occurred in 13 (13%). Presence of apical PSS was the strongest echocardiographic predictor of VA (multivariable hazards ratio: 5.11; 95% confidence interval [CI]: 1.37 to 19.08; p = 0.015), which resulted in a negative predictive value of 96% (95% CI: 89% to 98%) and a positive predictive value of 29% (95% CI: 21% to 40%). CONCLUSIONS: Global and regional LV mechanical alterations in PLN p.Arg14del mutation carriers precede arrhythmic symptoms and overt structural disease. Pre-symptomatic mutation carriers with normal deformation patterns in the apex are at low risk of developing VA within 3 years, whereas mutation carriers with apical PSS appear to be at higher risk

    P62-positive aggregates are homogenously distributed in the myocardium and associated with the type of mutation in genetic cardiomyopathy

    Get PDF
    © 2021 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd Genetic cardiomyopathy is caused by mutations in various genes. The accumulation of potentially proteotoxic mutant protein aggregates due to insufficient autophagy is a possible mechanism of disease development. The objective of this study was to investigate the distribution in the myocardium of such aggregates in relation to specific pathogenic genetic mutations in cardiomyopathy hearts. Hearts from 32 genetic cardiomyopathy patients, 4 non-genetic cardiomyopathy patients and 5 controls were studied. Microscopic slices from an entire midventricular heart slice were stained for p62 (sequestosome-1, marker for aggregated proteins destined for autophagy). The percentage of cardiomyocytes with p62 accumulation was higher in cardiomyopathy hearts (median 3.3%) than in healthy controls (0.3%; P <.0001). p62 accumulation was highest in the desmin (15.6%) and phospholamban (7.2%) groups. P62 accumulation was homogeneously distributed in the myocardium. Fibrosis was not associated with p62 accumulation in subgroup analysis of phospholamban hearts. In conclusion, accumulation of p62-positive protein aggregates is homogeneously distributed in the myocardium independently of fibrosis distribution and associated with desmin and phospholamban cardiomyopathy. Proteotoxic protein accumulation is a diffuse process in the myocardium while a more localized second hit, such as local strain during exercise, might determine whether this leads to regional myocyte decay

    Distinct molecular signature of phospholamban p.Arg14del arrhythmogenic cardiomyopathy.

    Get PDF
    Phospholamban (PLN) p.Arg14del cardiomyopathy is characterized by a distinct arrhythmogenic biventricular phenotype that can be predominantly left ventricular, right ventricular, or both. Our aim was to further elucidate distinct features of this cardiomyopathy with respect to the distribution of desmosomal proteins observed by immunofluorescence (IF) in comparison to desmosomal arrhythmogenic cardiomyopathy and co-existent genetic variants. We studied eight explanted heart specimens from PLN p.Arg14del mutation carriers. Macro- and microscopic examination revealed biventricular presence of fibrofatty replacement and interstitial fibrosis. Five out of 8 (63%) patients met consensus criteria for both arrhythmogenic right ventricular cardiomyopathy (ARVC) and dilated cardiomyopathy (DCM). In four cases, targeted next-generation sequencing revealed one additional pathogenic variant and six variants of unknown significance. IF showed diminished junction plakoglobin signal intensity at the intercalated disks in 4 (67%) out of 6 cases fulfilling ARVC criteria but normal intensity in both cases fulfilling only DCM criteria. Notably, the four cases with diminished junction plakoglobin were also those where an additional gene variant was detected. IF for two proteins recently investigated in desmosomal arrhythmogenic cardiomyopathy (ACM), synapse-associated protein 97 and glycogen synthase kinase-3 beta, showed a distinct distributional pattern in comparison to desmosomal ACM. In 7 (88%) out of 8 cases we observed both a strong synapse-associated protein 97 signal at the sarcomeres and no glycogen synthase kinase-3 beta translocation to the intercalated discs. Phospholamban p.Arg14del cardiomyopathy is characterized by a distinct molecular signature compared to desmosomal ACM, specifically a different desmosomal protein distribution. This study substantiates the idea that additional genetic variants play a role in the phenotypical heterogeneity
    • …
    corecore