99 research outputs found
Third Level Trigger for the Fluorescence Telescopes of the Pierre Auger Observatory
The trigger system for the Auger fluorescence telescopes is implemented in
hard- and software for an efficient selection of fluorescence light tracks
induced by high-energy extensive air showers. The algorithm of the third stage
uses the multiplicity signal of the hardware for fast rejection of lightning
events with above 99% efficiency. In a second step direct muon hits in the
camera and random triggers are rejected by analyzing the space-time correlation
of the pixels. The trigger algorithm was tested with measured and simulated
showers and implemented in the electronics of the fluorescence telescopes. A
comparison to a prototype trigger without multiplicity shows the superiority of
this approach, e.g. the false rejection rate is a factor 10 lower.Comment: 8 pages, 7 figures, to be published in NIM A; 1 typo correcte
Design of a mobile neutron spectrometer for the Laboratori Nazionali del Gran Sasso (LNGS)
Environmental neutrons are a source of background for rare event searches (e.g., dark matter direct detection and neutrinoless double beta decay experiments) taking place in deep underground laboratories. The overwhelming majority of these neutrons are produced in the cavern walls by means of intrinsic radioactivity of the rock and concrete. Their flux and spectrum depend on time and location. Precise knowledge of this background is necessary to devise sufficient shielding and veto mechanisms, improving the sensitivity of the neutron-susceptible underground experiments. In this report, we present the design and the expected performance of a mobile neutron detector for the LNGS underground laboratory. The detector is based on capture-gated spectroscopy technique and comprises essentially a stack of plastic scintillator bars wrapped with gadolinium foils. The extensive simulation studies demonstrate that the detector will be capable of measuring ambient neutrons at low flux levels (~ n/cm/s) at LNGS, where the ambient gamma flux is by about 5 orders of magnitude larger
A search for low-mass WIMPs with EDELWEISS-II heat-and-ionization detectors
We report on a search for low-energy (E < 20 keV) WIMP-induced nuclear
recoils using data collected in 2009 - 2010 by EDELWEISS from four germanium
detectors equipped with thermal sensors and an electrode design (ID) which
allows to efficiently reject several sources of background. The data indicate
no evidence for an exponential distribution of low-energy nuclear recoils that
could be attributed to WIMP elastic scattering after an exposure of 113 kg.d.
For WIMPs of mass 10 GeV, the observation of one event in the WIMP search
region results in a 90% CL limit of 1.0x10^-5 pb on the spin-independent
WIMP-nucleon scattering cross-section, which constrains the parameter space
associated with the findings reported by the CoGeNT, DAMA and CRESST
experiments.Comment: PRD rapid communication accepte
Background studies for the EDELWEISS dark matter experiment
The EDELWEISS-II collaboration has completed a direct search for WIMP dark
matter using cryogenic Ge detectors (400 g each) and 384 kgdays of
effective exposure. A cross-section of pb is excluded at
90% C.L. for a WIMP mass of 85 GeV. The next phase, EDELWEISS-III, aims to
probe spin-independent WIMP-nucleon cross-sections down to a few
pb. We present here the study of gamma and neutron background
coming from radioactive decays in the set-up and shielding materials. We have
carried out Monte Carlo simulations for the completed EDELWEISS-II setup with
GEANT4 and normalised the expected background rates to the measured
radioactivity levels (or their upper limits) of all materials and components.
The expected gamma-ray event rate in EDELWEISS-II at 20-200 keV agrees with the
observed rate of 82 events/kg/day within the uncertainties in the measured
concentrations. The calculated neutron rate from radioactivity of 1.0-3.1
events (90% C.L.) at 20-200 keV in the EDELWEISS-II data together with the
expected upper limit on the misidentified gamma-ray events (), surface
betas (), and muon-induced neutrons (), do not contradict 5
observed events in nuclear recoil band. We have then extended the simulation
framework to the EDELWEISS-III configuration with 800 g crystals, better
material purity and additional neutron shielding inside the cryostat. The
gamma-ray and neutron backgrounds in 24 kg fiducial mass of EDELWEISS-III have
been calculated as 14-44 events/kg/day and 0.7-1.4 events per year,
respectively. The results of the background studies performed in the present
work have helped to select better purity components and improve shielding in
EDELWEISS-III to further reduce the expected rate of background events in the
next phase of the experiment.Comment: 15 pages, 9 figures, to be published in Astroparticle Physic
Muon-induced background in the EDELWEISS dark matter search
A dedicated analysis of the muon-induced background in the EDELWEISS dark
matter search has been performed on a data set acquired in 2009 and 2010. The
total muon flux underground in the Laboratoire Souterrain de Modane (LSM) was
measured to be \,muons/m/d. The
modular design of the muon-veto system allows the reconstruction of the muon
trajectory and hence the determination of the angular dependent muon flux in
LSM. The results are in good agreement with both MC simulations and earlier
measurements. Synchronization of the muon-veto system with the phonon and
ionization signals of the Ge detector array allowed identification of
muon-induced events. Rates for all muon-induced events and of WIMP-like events were extracted. After
vetoing, the remaining rate of accepted muon-induced neutrons in the
EDELWEISS-II dark matter search was determined to be at 90%\,C.L. Based on
these results, the muon-induced background expectation for an anticipated
exposure of 3000\,\kgd\ for EDELWEISS-3 is
events.Comment: 21 pages, 16 figures, Accepted for publication in Astropart. Phy
Axion searches with the EDELWEISS-II experiment
We present new constraints on the couplings of axions and more generic
axion-like particles using data from the EDELWEISS-II experiment. The EDELWEISS
experiment, located at the Underground Laboratory of Modane, primarily aims at
the direct detection of WIMPs using germanium bolometers. It is also sensitive
to the low-energy electron recoils that would be induced by solar or dark
matter axions. Using a total exposure of up to 448 kg.d, we searched for
axion-induced electron recoils down to 2.5 keV within four scenarios involving
different hypotheses on the origin and couplings of axions. We set a 95% CL
limit on the coupling to photons GeV in
a mass range not fully covered by axion helioscopes. We also constrain the
coupling to electrons, , similar to the more
indirect solar neutrino bound. Finally we place a limit on , where is the
effective axion-nucleon coupling for Fe. Combining these results we
fully exclude the mass range keV for DFSZ axions and
keV for KSVZ axions
- …