78,969 research outputs found

    Primary reaction control system/remote manipulator system interaction with loaded arm. Space shuttle engineering and operations support

    Get PDF
    A study of the interaction between the orbiter primary reaction control system (PRCS) and the remote manipulator system (RMS) with a loaded arm is documented. This analysis was performed with the Payload Deployment and Retrieval Systems Simulation (PDRSS) program with the passive arm bending option. The passive-arm model simulates the arm as massless elastic links with locked joints. The study was divided into two parts. The first part was the evaluation of the response of the arm to step inputs (i.e. constant jet torques) about each of the orbiter body axes. The second part of the study was the evaluation of the response of the arm to minimum impulse primary RCS jet firings with both single pulse and pulse train inputs

    Carbon monoxide oxidation catalysis over Ir(110)

    Get PDF
    N/

    A microcontroller system for investigating the catch effect: Functional electrical stimulation of the common peroneal nerve

    No full text
    Correction of drop foot in hemiplegic gait is achieved by electrical stimulation of the common peroneal nerve with a series of pulses at a fixed frequency. However, during normal gait, the electromyographic signals from the tibialis anterior muscle indicate that muscle force is not constant but varies during the swing phase. The application of double pulses for the correction of drop foot may enhance the gait by generating greater torque at the ankle and thereby increase the efficiency of the stimulation with reduced fatigue. A flexible controller has been designed around the Odstock Drop Foot Stimulator to deliver different profiles of pulses implementing doublets and optimum series. A peripheral interface controller (PIC) microcontroller with some external circuits has been designed and tested to accommodate six profiles. Preliminary results of the measurements from a normal subject seated in a multi-moment chair (an isometric torque measurement device) indicate that profiles containing doublets and optimum spaced pulses look favourable for clinical use

    A fast and robust approach to long-distance quantum communication with atomic ensembles

    Get PDF
    Quantum repeaters create long-distance entanglement between quantum systems while overcoming difficulties such as the attenuation of single photons in a fiber. Recently, an implementation of a repeater protocol based on single qubits in atomic ensembles and linear optics has been proposed [Nature 414, 413 (2001)]. Motivated by rapid experimental progress towards implementing that protocol, here we develop a more efficient scheme compatible with active purification of arbitrary errors. Using similar resources as the earlier protocol, our approach intrinsically purifies leakage out of the logical subspace and all errors within the logical subspace, leading to greatly improved performance in the presence of experimental inefficiencies. Our analysis indicates that our scheme could generate approximately one pair per 3 minutes over 1280 km distance with fidelity (F>78%) sufficient to violate Bell's inequality.Comment: 10 pages, 4 figures, 5 tables (Two appendixes are added to justify two claims used in the maintext.

    A methodology for the decomposition of discrete event models for parallel simulation

    Get PDF
    Parallel simulation has presented the possibility of performing high-speed simulation. However, when attempting to make a link between the requirements of parallel simulation and discrete event simulation used in commercial areas such as manufacturing, a major problem arises. This lies in the decomposition of the simulation into a series of concurrently executing objects. Using the activity cycle diagram simulation technique as an illustrative example, this paper suggests a solution to this decomposition problem. This is discussed within the context of providing a conceptually seamless methodology for translating simulation models into a form which can exploit the benefits of parallel computing

    A system reliability analysis for stand-by spares with non-zero unpowered failure rates

    Get PDF
    Equations which define the reliability of n-fold parallel systems with stand-by spares, and triply redundant, majority-voting systems with stand-by spares have been derived. The stand-by spares have been assumed to have a non-zero failure rate while in the stand-by mode. A Monte Carlo system simulation has been generated and the results compared to the theoretical reliability predictions. A comparison of these two stand-by configurations is also presented for three through six total units

    Racial/Ethnic Disparities in Diabetes Care and Outcomes: A Mixed Methods Study

    Full text link
    Limited research has examined racial/ethnic differences in diabetes care and outcomes among primary care patients. This study examined racial/ethnic differences in diabetes care and outcomes among an ambulatory patient population and explored patient perceptions of the patient-provider relationship to inform strategies to improve care delivery. Using data from 62,149 adults with diabetes who received care within Atrium Health in 2013, regression models assessed associations between race/ethnicity and the following outcomes: glycated hemoglobin (HbA1c) tests, low density lipoprotein (LDL) and blood pressure (BP) screening, foot and eye exams, and HbA1c, LDL, and BP control. Eleven patients with diabetes and uncontrolled hypertension participated in three focus groups about their perceptions of the patient-provider relationship. Compared to non-Hispanic Whites, non-Hispanic Blacks had 22% to 73% higher odds of receiving screenings (HbA1c, LDL, BP, foot and eye exams;
    corecore