13 research outputs found

    The soil microbiome reduces Striga infection of sorghum by modulation of host-derived signaling molecules and root development

    Get PDF
    Sorghum bicolor is one of the most important cereals in the world and a staple crop for smallholder famers in sub-Saharan Africa. However approximately 20% of sorghum yield is annually lost on the African continent due to infestation with the root parasitic weed Striga hermonthica. Existing Striga management strategies often show an inconsistent to low efficacy. Hence, novel and integrated approaches are needed as an alternative strategy. Here, we demonstrate that the soil microbiome suppresses Striga infection in sorghum. We associate this suppression with microbiome-mediated induction of root endodermal suberization and aerenchyma formation, and depletion of haustorium inducing factors (HIFs), root exudate compounds that are critical for the initial stages of Striga infection. We further identify microbial taxa associated with reduced Striga infection with concomitant changes in root cellular anatomy and differentiation as well as HIF degradation. Our study describes novel microbiome-mediated mechanisms of Striga suppression, encompassing repression of haustorium formation and induction of physical barriers in the host root tissue. These findings open new avenues to broaden the effectiveness of Striga management practices

    Characterization of the G protein-coupled receptor family SREB across fish evolution

    No full text
    Abstract The SREB (Super-conserved Receptors Expressed in Brain) family of G protein-coupled receptors is highly conserved across vertebrates and consists of three members: SREB1 (orphan receptor GPR27), SREB2 (GPR85), and SREB3 (GPR173). Ligands for these receptors are largely unknown or only recently identified, and functions for all three are still beginning to be understood, including roles in glucose homeostasis, neurogenesis, and hypothalamic control of reproduction. In addition to the brain, all three are expressed in gonads, but relatively few studies have focused on this, especially in non-mammalian models or in an integrated approach across the entire receptor family. The purpose of this study was to more fully characterize sreb genes in fish, using comparative genomics and gonadal expression analyses in five diverse ray-finned (Actinopterygii) species across evolution. Several unique characteristics were identified in fish, including: (1) a novel, fourth euteleost-specific gene (sreb3b or gpr173b) that likely emerged from a copy of sreb3 in a separate event after the teleost whole genome duplication, (2) sreb3a gene loss in Order Cyprinodontiformes, and (3) expression differences between a gar species and teleosts. Overall, gonadal patterns suggested an important role for all sreb genes in teleost testicular development, while gar were characterized by greater ovarian expression that may reflect similar roles to mammals. The novel sreb3b gene was also characterized by several unique features, including divergent but highly conserved amino acid positions, and elevated brain expression in puffer (Dichotomyctere nigroviridis) that more closely matched sreb2, not sreb3a. These results demonstrate that SREBs may differ among vertebrates in genomic structure and function, and more research is needed to better understand these roles in fish

    Clinical impact of the interstitial lung disease multidisciplinary service

    No full text
    Background and objective: Multidisciplinary discussions (MDDs) have been shown to improve diagnostic accuracy in interstitial lung disease (ILD) diagnosis. However, their clinical impact on patient care has never been clearly demonstrated. We describe the effect that an ILD multidisciplinary service has upon the diagnosis and management of patients with suspected ILD. Methods: Patients at two specialized centres with suspected ILD underwent ILD multidisciplinary team review (ILD-MDT) (standard ILD clinic visit and diagnostic review at ILD-MDD). We compared changes in ILD diagnosis and management at referral to those following the ILD-MDT. Results: Ninety patients, 60% males (54/90), aged 67.3 years (SD = 11.4) were reviewed for suspected ILD. Overall, the ILD-MDT resulted in a change in specific ILD diagnosis in 48/90 (53%) patients. Of the 27 patients referred with a diagnosis of idiopathic pulmonary fibrosis (IPF), the diagnosis was changed at MDD in 10 patients. In contrast, seven patients had their diagnosis changed to IPF. There was also a significant reduction in ‘unclassifiable’ diseases and disease behaviour classifications provided additional information beyond ILD diagnosis. Conclusion: Dedicated tertiary ILD-MDT service has an important clinical impact on the care of the ILD patient, with frequent changes in ILD diagnosis and subsequent management. Further research to investigate long-term clinical outcomes of ILD-MDT is required

    The soil microbiome reduces Striga infection of sorghum by modulation of host-derived signaling molecules and root development

    Get PDF
    Sorghum bicolor is one of the most important cereals in the world and a staple crop for smallholder famers in sub-Saharan Africa. However approximately 20% of sorghum yield is annually lost on the African continent due to infestation with the root parasitic weed Striga hermonthica. Existing Striga management strategies often show an inconsistent to low efficacy. Hence, novel and integrated approaches are needed as an alternative strategy. Here, we demonstrate that the soil microbiome suppresses Striga infection in sorghum. We associate this suppression with microbiome-mediated induction of root endodermal suberization and aerenchyma formation, and depletion of haustorium inducing factors (HIFs), root exudate compounds that are critical for the initial stages of Striga infection. We further identify microbial taxa associated with reduced Striga infection with concomitant changes in root cellular anatomy and differentiation as well as HIF degradation. Our study describes novel microbiome-mediated mechanisms of Striga suppression, encompassing repression of haustorium formation and induction of physical barriers in the host root tissue. These findings open new avenues to broaden the effectiveness of Striga management practices
    corecore