13 research outputs found

    Phylogenomics and the rise of the angiosperms

    Get PDF
    Angiosperms are the cornerstone of most terrestrial ecosystems and human livelihoods1,2. A robust understanding of angiosperm evolution is required to explain their rise to ecological dominance. So far, the angiosperm tree of life has been determined primarily by means of analyses of the plastid genome3,4. Many studies have drawn on this foundational work, such as classification and first insights into angiosperm diversification since their Mesozoic origins5,6,7. However, the limited and biased sampling of both taxa and genomes undermines confidence in the tree and its implications. Here, we build the tree of life for almost 8,000 (about 60%) angiosperm genera using a standardized set of 353 nuclear genes8. This 15-fold increase in genus-level sampling relative to comparable nuclear studies9 provides a critical test of earlier results and brings notable change to key groups, especially in rosids, while substantiating many previously predicted relationships. Scaling this tree to time using 200 fossils, we discovered that early angiosperm evolution was characterized by high gene tree conflict and explosive diversification, giving rise to more than 80% of extant angiosperm orders. Steady diversification ensued through the remaining Mesozoic Era until rates resurged in the Cenozoic Era, concurrent with decreasing global temperatures and tightly linked with gene tree conflict. Taken together, our extensive sampling combined with advanced phylogenomic methods shows the deep history and full complexity in the evolution of a megadiverse clade

    Perspectives on resilience for military readiness and preparedness: Report of an international military physiology roundtable

    No full text
    Modern warfare operations often occur in volatile, uncertain, complex, and ambiguous (VUCA) environments accompanied by physical exertion, cognitive overload, sleep restriction and caloric deprivation. The increasingly fast-paced nature of these operations requires military personnel to demonstrate readiness and resiliency in the face of stressful environments to maintain optimal cognitive and physical performance necessary for success. Resiliency, the capacity to overcome the negative effects of setbacks and associated stress on performance, is a complex process involving not only an individual's physiology and psychology, but the influence of factors such as sex, environment, and training. The purpose of this moderated roundtable was to address five key domains of resiliency in a point/counterpoint format: physiological versus psychological resiliency, sex differences, contributions of aerobic and strength training, thermal tolerance, and the role of nature versus nurture. Each speaker was given three minutes to present and the moderator facilitated questions and discussion following the panel's presentation. The interconnectedness of the five domains highlights the need for an interdisciplinary approach to understand and build resilience to enhance military performance. \ua9 2018 Sports Medicine Australi

    Contrasting effects of polysaccharide components on the cooking properties of Roots, Tubers and Bananas (RTBs)

    No full text
    Background: Consumer preferences for boiled or fried pieces of roots, tubers and bananas (RTBs) foodstuffs are mainly related to their texture. Different raw and cooked RTBs were physiochemically characterised to determine the effect of biochemical components on their cooking properties. Results: Firmness in boiled sweetpotato increases with sugar and amylose contents but no significant correlation was observed between other physicochemical characteristics and cooking behaviour. Hardness of boiled yam can be predicted by dry matter (DM) and galacturonic acid (GalA) levels. For cassava, no significant correlation was found between textural properties of boiled roots and DM, but amylose and Ca2+ content were correlated with firmness, negatively and positively, respectively. Water absorption of cassava root pieces boiled in calcium chloride solutions was much lower, providing indirect evidence that pectins are involved in determining cooking quality. A highly positive correlation between textural attributes and DM was observed for fried plantain, but no significant correlation was found with GalA, although frying slightly reduced GalA. Conclusion: The effect of main components on texture after cooking differs for the various RTBs. The effect of global DM and major components (i.e., starch, amylose) is prominent for yam, plantain and sweetpotato. Pectins also play an important role on the texture of boiled yam and play a prominent role for cassava through interaction with Ca2+
    corecore