4,545 research outputs found

    Anomalous Hall conductivity of clean Sr2RuO4 at finite temperatures

    Full text link
    Building on previous work, we calculate the temperature- and frequency-dependent {\it anomalous} Hall conductivity for the putative multiband chiral superconductor \Sr using a simple microscopic two-orbital model without impurities. A Hall effect arises in this system without the application of an external magnetic field due to the time-reversal-symmetry breaking chiral superconducting state. The anomalous Hall conductivity is nonzero only when there is more than one superconducting order parameter, involving inter- as well as intra-band Cooper pairing. We find that such a multiband superconducting state gives rise to a distinctive resonance in the frequency-dependence of the Hall conductivity at a frequency close to the inter-orbital hopping energy scale that describes hopping between Ru dxzd_{xz} and dyzd_{yz} orbitals. The detection of this feature, robust to temperature and impurity effects in the superconducting phase, would thus constitute compelling evidence in favour of a multiband origin of superconductivity in \Sr, with strong superconductivity on the α\alpha and β\beta bands. The temperature dependence of the Hall conductivity and Kerr rotation angle are studied within this model at the one-loop approximation.Comment: 14 pages, 8 figures. Invited submission, proceedings of M2S 2012. Published versio

    The Velocity Dispersion Profile of the Remote Dwarf Spheroidal Galaxy Leo I: A Tidal Hit and Run?

    Full text link
    (abridged) We present kinematic results for a sample of 387 stars located near Leo I based on spectra obtained with the MMT's Hectochelle spectrograph near the MgI/Mgb lines. We estimate the mean velocity error of our sample to be 2.4 km/s, with a systematic error of < 1 km/s. We produce a final sample of 328 Leo I red giant members, from which we measure a mean heliocentric radial velocity of 282.9 +/- 0.5 km/s, and a mean radial velocity dispersion of 9.2 +/- 0.4 km/s for Leo I. The dispersion profile of Leo I is flat out to beyond its classical `tidal' radius. We fit the profile to a variety of equilibrium dynamical models and can strongly rule out models where mass follows light. Two-component Sersic+NFW models with tangentially anisotropic velocity distributions fit the dispersion profile well, with isotropic models ruled out at a 95% confidence level. The mass and V-band mass-to-light ratio of Leo I estimated from equilibrium models are in the ranges 5-7 x 10^7 M_sun and 9-14 (solar units), respectively, out to 1 kpc from the galaxy center. Leo I members located outside a `break radius' (about 400 arcsec = 500 pc) exhibit significant velocity anisotropy, whereas stars interior appear to have isotropic kinematics. We propose the break radius represents the location of the tidal radius of Leo I at perigalacticon of a highly elliptical orbit. Our scenario can account for the complex star formation history of Leo I, the presence of population segregation within the galaxy, and Leo I's large outward velocity from the Milky Way. The lack of extended tidal arms in Leo I suggests the galaxy has experienced only one perigalactic passage with the Milky Way, implying that Leo I may have been injected into its present orbit by a third body a few Gyr before perigalacticon.Comment: ApJ accepted, 23 figures, access paper as a pdf file at http://www.astro.lsa.umich.edu/~mmateo/research.htm

    Popup Tunable Frequency Selective Surfaces for Strain Sensing

    Get PDF
    A 3D popup frequency selective surface (FSS) is presented that can be tuned by the amount of strain due to mechanical loading in its elastomeric substrate. The proposed FSS structure comprises periodic two-dimensional (2D) crossed dipoles attached to the substrate at selective bonding sites. Strain release in the substrate induces compressive stress in the attached FSS, converting it to a 3D periodic pattern. With the out of plane displacement, the interaction with the incident field and mutual interactions between the elements are altered, resulting in a resonant frequency shift and a more stable response regarding the incident angles from 0o to 45o. A design of popup FSS structure is introduced for strain sensing applications. The potential sensor can measure up to 50% strain in the substrate by frequency down-shift from 3.1 GHz to 2.4 GHz. Multiphysics Finite Element Method (FEM) modeling of the mechanical and RF simulation was in good correlation with the experimental data and demonstrates the potential of these structures as sensors

    Adaptive communication among collaborative agents: preliminary results with symbol grounding

    Get PDF

    Development and optimization of a differentiated airway epithelial cell model of the bovine respiratory tract

    Get PDF
    Cattle are subject to economically-important respiratory tract infections by various bacterial and viral pathogens and there is an urgent need for the development of more realistic in vitro models of the bovine respiratory tract to improve our knowledge of disease pathogenesis. In the present study, we have optimized the culture conditions in serum-free medium that allow bovine bronchial epithelial cells (BBECs) grown at an air-liquid interface to differentiate into a three-dimensional epithelium that is highly representative of the bovine airway. Epidermal growth factor was required to trigger both proliferation and differentiation of BBECs whilst retinoic acid was also essential for mucociliary differentiation. Triiodothyronine was demonstrated not to be important for the differentiation of BBECs. Oxygen concentration had a minimal effect although optimal ciliation was achieved when BBECs were cultured at 14% oxygen tension. Insert pore-density had a significant effect on the growth and differentiation of BBECs; a high-pore-density was required to trigger optimum differentiation. The established BBEC model will have wide-ranging applications for the study of bacterial and viral infections of the bovine respiratory tract; it will contribute to the development of improved vaccines and therapeutics and will reduce the use of cattle in in vivo experimentation

    CO(2) Diffusion in Polar Ice: Observations from Naturally Formed CO(2) Spikes in the Siple Dome (Antarctica) Ice Core

    Get PDF
    One common assumption in interpreting ice-core CO(2) records is that diffusion in the ice does not affect the concentration profile. However, this assumption remains untested because the extremely small CO(2) diffusion coefficient in ice has not been accurately determined in the laboratory. In this study we take advantage of high levels of CO(2) associated with refrozen layers in an ice core from Siple Dome, Antarctica, to study CO(2) diffusion rates. We use noble gases (Xe/Ar and Kr/Ar), electrical conductivity and Ca(2+) ion concentrations to show that substantial CO(2) diffusion may occur in ice on timescales of thousands of years. We estimate the permeation coefficient for CO(2) in ice is similar to 4 x 10(-21) mol m(-1) s(-1) Pa(-1) at -23 degrees C in the top 287 m (corresponding to 2.74 kyr). Smoothing of the CO(2) record by diffusion at this depth/age is one or two orders of magnitude smaller than the smoothing in the firn. However, simulations for depths of similar to 930-950m (similar to 60-70 kyr) indicate that smoothing of the CO(2) record by diffusion in deep ice is comparable to smoothing in the firn. Other types of diffusion (e.g. via liquid in ice grain boundaries or veins) may also be important but their influence has not been quantified
    • …
    corecore