549 research outputs found

    Building Social Capital Through Rhetoric and Public Relations

    Get PDF
    When the focus is on meaning making, language, rhetorical argument, and persuasion, there is enormous potential to see how public relations theory and practice in external organizational rhetoric can serve community interests—or not. Rhetoric (as the discourse) and public relations (as the enactment of that discourse) are essential to building and sustaining a society as a good place to live because they create various types of social capital. This article describes the various relationships among international and indigenous NGOs, business organizations, and community activists in facilitating (and, at times, frustrating) dialogue in Jordan. It offers an example of how social capital may be created when rhetors using public relations advocate in ways that enhance the capacity of local governance and make their community a better place to live.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Aligned polyhydroxyalkanoate blend electrospun fibers as intraluminal guidance scaffolds for peripheral nerve repair

    Get PDF
    The use of nerve guidance conduits (NGCs) to treat peripheral nerve injuries is a favorable approach to the current “gold standard” of autografting. However, as simple hollow tubes, they lack specific topographical and mechanical guidance cues present in nerve grafts and therefore are not suitable for treating large gap injuries (30–50 mm). The incorporation of intraluminal guidance scaffolds, such as aligned fibers, has been shown to increase neuronal cell neurite outgrowth and Schwann cell migration distances. A novel blend of PHAs, P(3HO)/P(3HB) (50:50), was investigated for its potential as an intraluminal aligned fiber guidance scaffold. Aligned fibers of 5 and 8 μm diameter were manufactured by electrospinning and characterized using SEM. Fibers were investigated for their effect on neuronal cell differentiation, Schwann cell phenotype, and cell viability in vitro. Overall, P(3HO)/P(3HB) (50:50) fibers supported higher neuronal and Schwann cell adhesion compared to PCL fibers. The 5 μm PHA blend fibers also supported significantly higher DRG neurite outgrowth and Schwann cell migration distance using a 3D ex vivo nerve injury model

    Transport Properties of the Quark-Gluon Plasma -- A Lattice QCD Perspective

    Full text link
    Transport properties of a thermal medium determine how its conserved charge densities (for instance the electric charge, energy or momentum) evolve as a function of time and eventually relax back to their equilibrium values. Here the transport properties of the quark-gluon plasma are reviewed from a theoretical perspective. The latter play a key role in the description of heavy-ion collisions, and are an important ingredient in constraining particle production processes in the early universe. We place particular emphasis on lattice QCD calculations of conserved current correlators. These Euclidean correlators are related by an integral transform to spectral functions, whose small-frequency form determines the transport properties via Kubo formulae. The universal hydrodynamic predictions for the small-frequency pole structure of spectral functions are summarized. The viability of a quasiparticle description implies the presence of additional characteristic features in the spectral functions. These features are in stark contrast with the functional form that is found in strongly coupled plasmas via the gauge/gravity duality. A central goal is therefore to determine which of these dynamical regimes the quark-gluon plasma is qualitatively closer to as a function of temperature. We review the analysis of lattice correlators in relation to transport properties, and tentatively estimate what computational effort is required to make decisive progress in this field.Comment: 54 pages, 37 figures, review written for EPJA and APPN; one parag. added end of section 3.4, and one at the end of section 3.2.2; some Refs. added, and some other minor change

    Complete measurement of three-body photodisintegration of 3He for photon energies between 0.35 and 1.55 GeV

    Full text link
    The three-body photodisintegration of 3He has been measured with the CLAS detector at Jefferson Lab, using tagged photons of energies between 0.35 GeV and 1.55 GeV. The large acceptance of the spectrometer allowed us for the first time to cover a wide momentum and angular range for the two outgoing protons. Three kinematic regions dominated by either two- or three-body contributions have been distinguished and analyzed. The measured cross sections have been compared with results of a theoretical model, which, in certain kinematic ranges, have been found to be in reasonable agreement with the data.Comment: 22 pages, 25 eps figures, 2 tables, submitted to PRC. Modifications: removed 2 figures, improvements on others, a few minor modifications to the tex

    A Kinematically Complete Measurement of the Proton Structure Function F2 in the Resonance Region and Evaluation of Its Moments

    Get PDF
    We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.Comment: revtex4 18 pp., 12 figure

    eta-prime photoproduction on the proton for photon energies from 1.527 to 2.227 GeV

    Full text link
    Differential cross sections for the reaction gamma p -> eta-prime p have been measured with the CLAS spectrometer and a tagged photon beam with energies from 1.527 to 2.227 GeV. The results reported here possess much greater accuracy than previous measurements. Analyses of these data indicate for the first time the coupling of the etaprime N channel to both the S_11(1535) and P_11(1710) resonances, known to couple strongly to the eta N channel in photoproduction on the proton, and the importance of j=3/2 resonances in the process.Comment: 6 pages, 3 figure

    Measurement of the Deuteron Structure Function F2 in the Resonance Region and Evaluation of Its Moments

    Full text link
    Inclusive electron scattering off the deuteron has been measured to extract the deuteron structure function F2 with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. The measurement covers the entire resonance region from the quasi-elastic peak up to the invariant mass of the final-state hadronic system W~2.7 GeV with four-momentum transfers Q2 from 0.4 to 6 (GeV/c)^2. These data are complementary to previous measurements of the proton structure function F2 and cover a similar two-dimensional region of Q2 and Bjorken variable x. Determination of the deuteron F2 over a large x interval including the quasi-elastic peak as a function of Q2, together with the other world data, permit a direct evaluation of the structure function moments for the first time. By fitting the Q2 evolution of these moments with an OPE-based twist expansion we have obtained a separation of the leading twist and higher twist terms. The observed Q2 behaviour of the higher twist contribution suggests a partial cancellation of different higher twists entering into the expansion with opposite signs. This cancellation, found also in the proton moments, is a manifestation of the "duality" phenomenon in the F2 structure function
    • …
    corecore