28 research outputs found

    Feasibility studies for imaging e+^{+}e−^{-} annihilation with modular multi-strip detectors

    Full text link
    Studies based on imaging the annihilation of the electron (e−^{-}) and its antiparticle positron (e+^{+}) open up several interesting applications in nuclear medicine and fundamental research. The annihilation process involves both the direct conversion of e+^{+}e−^{-} into photons and the formation of their atomically bound state, the positronium atom (Ps), which can be used as a probe for fundamental studies. With the ability to produce large quantities of Ps, manipulate them in long-lived Ps states, and image their annihilations after a free fall or after passing through atomic interferometers, this purely leptonic antimatter system can be used to perform inertial sensing studies in view of a direct test of Einstein equivalence principle. It is envisioned that modular multistrip detectors can be exploited as potential detection units for this kind of studies. In this work, we report the results of the first feasibility study performed on a e+^{+} beamline using two detection modules to evaluate their reconstruction performance and spatial resolution for imaging e+^{+}e−^{-} annihilations and thus their applicability for gravitational studies of Ps

    Hookah smoking is strongly associated with diabetes mellitus, metabolic syndrome and obesity: a population-based study

    Get PDF
    Objectives The adverse effects of cigarette smoking have been widely studied before, whilst the effects of hookah smoking has received less attention, although it is a common habit in the Middle East. Here we have investigated the effects of cigarette and hookah smoking on biochemical characteristics in a representative population sample derived from the Mashhad stroke and heart atherosclerotic disorder (MASHAD) cohort study, from Northeastern Iran. Study design A total of 9840 subjects from the MASHAD population study were allocated to five groups; non-smokers (6742), ex-smokers (976), cigarette smokers (864), hookah smokers (1067), concomitant cigarette and hookah smokers (41). Methods Baseline characteristics were recorded in a questionnaire. Biochemical characteristics were measured by routine methods. Data were analyzed using SPSS software and p < 0.05 was considered significant. Results After adjustment for age and sex; the presence of CVD, obesity, metabolic syndrome, DM and dyslipidemia were significantly (p < 0.001) related to smoking status. After multivariate analysis, HDL (p < 0.001), WBC (p < 0.001), MCV (p < 0.05), PLT (p < 0.01) and RDW (p < 0.001), and the presence of CVD (p < 0.01), obesity (p < 0.001), metabolic syndrome (p < 0.05) and DM (p < 0.01) remained significant between cigarette smokers and non-smokers. Between hookah smokers and non-smokers; uric acid (p < 0.001), PLT (p < 0.05) and RDW (p < 0.05), and the presence of obesity (p < 0.01), metabolic syndrome (p < 0.001), diabetes (p < 0.01) and dyslipidemia (p < 0.01) remained significant after logistic regression. Conclusion There was a positive association between hookah smoking and metabolic syndrome, diabetes, obesity and dyslipidemia which was not established in cigarette smoking

    From tests of discrete symmetries to medical imaging with J-PET detector

    Get PDF
    We present results on CPT symmetry tests in decays of positronium performed with the precision at the level of 10−4^{-4}, and positronium images determined with the prototype of the J-PET tomograph. The first full-scale prototype apparatus consists of 192 plastic scintillator strips readout from both ends with vacuum tube photomultipliers. Signals produced by photomultipliers are probed in the amplitude domain and are digitized by FPGA-based readout boards in triggerless mode. In this contribution we report on the first two- and three-photon positronium images and tests of CPT symmetry in positronium decays

    Determining Dimensions of Iranians’ Individual Social Health: A Qualitative Approach

    No full text
    Background: Social health is important to be assessed as a dimension of health. The aim of study was to determine domains and sub-domains of individual social health of Iranians.Methods: This study was carried out with a qualitative approach, using thematic content analysis. Twenty five experts participated in interviews, using individual semi-structured interviews between November 2010 and June 2011.This data supported with strong search.Results: Two main areas extracted from these interviews including social support and social function. The social support domain contained seventeen sub-areas, including social support at the time of disease; disability; daily life issues, etc. And the social function as second domain contained twelve sub-areas, including: financial aids to others; emotionally aids to others; participating in social groups, etc.Conclusion: We developed a conceptual framework for social health in the individual level in Iranian population. It makes preparations for providing a valid and reliable measurement scale for social health in next studies and evidence-based policy-making

    Efficiency determination of J-PET: first plastic scintillators-based PET scanner

    Get PDF
    Abstract Background The Jagiellonian Positron Emission Tomograph is the 3-layer prototype of the first scanner based on plastic scintillators, consisting of 192 half-metre-long strips with readouts at both ends. Compared to crystal-based detectors, plastic scintillators are several times cheaper and could be considered as a more economical alternative to crystal scintillators in future PETs. JPET is also a first multi-photon PET prototype. For the development of multi-photon detection, with photon characterized by the continuous energy spectrum, it is important to estimate the efficiency of J-PET as a function of energy deposition. The aim of this work is to determine the registration efficiency of the J-PET tomograph as a function of energy deposition by incident photons and the intrinsic efficiency of the J-PET scanner in detecting photons of different incident energies. In this study, 3-hit events are investigated, where 2-hits are caused by 511 keV photons emitted in e+e−e^+e^- e + e - annihilations, while the third hit is caused by one of the scattered photons. The scattered photon is used to accurately measure the scattering angle and thus the energy deposition. Two hits by a primary and a scattered photon are sufficient to calculate the scattering angle of a photon, while the third hit ensures the precise labeling of the 511 keV photons. Results By comparing experimental and simulated energy distribution spectra, the registration efficiency of the J-PET scanner was determined in the energy deposition range of 70–270 keV, where it varies between 20 and 100 %\% % . In addition, the intrinsic efficiency of the J-PET was also determined as a function of the energy of the incident photons. Conclusion A method for determining registration efficiency as a function of energy deposition and intrinsic efficiency as a function of incident photon energy of the J-PET scanner was demonstrated. This study is crucial for evaluating the performance of the scanner based on plastic scintillators and its applications as a standard and multi-photon PET systems. The method may be also used in the calibration of Compton-cameras developed for the ion−beam therapy monitoring and simultaneous multi-radionuclide imaging in nuclear medicine
    corecore