7 research outputs found

    MulTreePrio: Scheduling task-based applications for heterogeneous computing systems

    Get PDF
    National audienceEffective scheduling is crucial for task-based applications to achieve high performance in heterogeneous computing systems. These applications are usually represented by directed acyclic graphs (DAG). In this paper, we present a dynamic scheduling technique for DAGs intending to minimize the overall completion time of the parallelized applications. We introduce MulTreePrio, a novel scheduler based on a set of balanced trees data structure. The assignment of tasks to available resources is done according to priority scores per task for each type of processing unit. These scores are computed through heuristics built according to a set of rules that our scheduler should fulfil. We simulate the scheduling on three DAGs coming from numerical kernels with different configurations and we compare its behavior with both dynamic schedulers and static scheduling techniques based on the critical path. We show the efficiency of our scheduler with an average speedup of x2 with respect to the dynamic scheduler and x0,99 compared to the critical path-based scheduler. MulTreePrio is promising and in future works, it will be integrated into a task-based runtime system and tested in real-life scenarios

    Autovesk: Automatic vectorized code generation from unstructured static kernels using graph transformations

    No full text
    International audienceLeveraging the SIMD capability of modern CPU architectures is mandatory to take full advantage of their increased performance. To exploit this capability, binary executables must be vectorized, either manually by developers or automatically by a tool. For this reason, the compilation research community has developed several strategies for transforming scalar code into a vectorized implementation. However, most existing automatic vectorization techniques in modern compilers are designed for regular codes, leaving irregular applications with non-contiguous data access patterns at a disadvantage. In this paper, we present a new tool, Autovesk, that automatically generates vectorized code from scalar code, specifically targeting irregular data access patterns. We describe how our method transforms a graph of scalar instructions into a vectorized one, using different heuristics to reduce the number or cost of instructions. Finally, we demonstrate theeffectiveness of our approach on various computational kernels using Intel AVX-512 and ARM SVE. We compare the speedups of Autovesk vectorized code over GCC, Clang LLVM and Intel automatic vectorization optimizations. We achieve competitive results on linear kernels and up to 11x speedups on irregular kernels

    MulTreePrio: Scheduling task-based applications for heterogeneous computing systems

    Get PDF
    National audienceEffective scheduling is crucial for task-based applications to achieve high performance in heterogeneous computing systems. These applications are usually represented by directed acyclic graphs (DAG). In this paper, we present a dynamic scheduling technique for DAGs intending to minimize the overall completion time of the parallelized applications. We introduce MulTreePrio, a novel scheduler based on a set of balanced trees data structure. The assignment of tasks to available resources is done according to priority scores per task for each type of processing unit. These scores are computed through heuristics built according to a set of rules that our scheduler should fulfil. We simulate the scheduling on three DAGs coming from numerical kernels with different configurations and we compare its behavior with both dynamic schedulers and static scheduling techniques based on the critical path. We show the efficiency of our scheduler with an average speedup of x2 with respect to the dynamic scheduler and x0,99 compared to the critical path-based scheduler. MulTreePrio is promising and in future works, it will be integrated into a task-based runtime system and tested in real-life scenarios

    MulTreePrio: Scheduling task-based applications for heterogeneous computing systems

    No full text
    National audienceEffective scheduling is crucial for task-based applications to achieve high performance in heterogeneous computing systems. These applications are usually represented by directed acyclic graphs (DAG). In this paper, we present a dynamic scheduling technique for DAGs intending to minimize the overall completion time of the parallelized applications. We introduce MulTreePrio, a novel scheduler based on a set of balanced trees data structure. The assignment of tasks to available resources is done according to priority scores per task for each type of processing unit. These scores are computed through heuristics built according to a set of rules that our scheduler should fulfil. We simulate the scheduling on three DAGs coming from numerical kernels with different configurations and we compare its behavior with both dynamic schedulers and static scheduling techniques based on the critical path. We show the efficiency of our scheduler with an average speedup of x2 with respect to the dynamic scheduler and x0,99 compared to the critical path-based scheduler. MulTreePrio is promising and in future works, it will be integrated into a task-based runtime system and tested in real-life scenarios
    corecore