
HAL Id: hal-03763824
https://hal.inria.fr/hal-03763824

Submitted on 29 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MulTreePrio: Scheduling task-based applications for
heterogeneous computing systems

Hayfa Tayeb, Bérenger Bramas, Abdou Guermouche, Mathieu Faverge

To cite this version:
Hayfa Tayeb, Bérenger Bramas, Abdou Guermouche, Mathieu Faverge. MulTreePrio: Scheduling task-
based applications for heterogeneous computing systems. COMPAS 2022 - Conférence francophone
d’informatique en Parallélisme, Architecture et Système, Jul 2022, Amiens, France. �hal-03763824�

https://hal.inria.fr/hal-03763824
https://hal.archives-ouvertes.fr

Compas’2022 : Parallélisme / Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

MulTreePrio: Scheduling task-based applications for
heterogeneous computing systems
Hayfa Tayeb1,3,4, Bérenger Bramas1,4, Abdou Guermouche2,3,4, and Mathieu Faverge2,3,4

1CAMUS Inria Nancy, ICube, University of Strasbourg, France
2HiePACS, Inria Bordeaux, LaBRI, Talence, France
3University of Bordeaux, Talence, France
4{first_name.last_name}@inria.fr

Abstract
Effective scheduling is crucial for task-based applications to achieve high performance in het-
erogeneous computing systems. These applications are usually represented by directed acyclic
graphs (DAG). In this paper, we present a dynamic scheduling technique for DAGs intending to
minimize the overall completion time of the parallelized applications. We introduce MulTreeP-
rio, a novel scheduler based on a set of balanced trees data structure. The assignment of tasks to
available resources is done according to priority scores per task for each type of processing unit.
These scores are computed through heuristics built according to a set of rules that our scheduler
should fulfil. We simulate the scheduling on three DAGs coming from numerical kernels with
different configurations and we compare its behavior with both dynamic schedulers and static
scheduling techniques based on the critical path. We show the efficiency of our scheduler with an
average speedup of x2 with respect to the dynamic scheduler and x0,99 compared to the critical
path-based scheduler. MulTreePrio is promising and in future works, it will be integrated into a
task-based runtime system and tested in real-life scenarios.

Keywords : Scheduling, DAG, Task-based applications, Heterogeneous systems

1. Introduction

High-performance computing (HPC) relies on heterogeneous computing systems that come with
an overall increased parallelism diversity such as multiprocessors and accelerators, e.g., graphical
processing units (GPUs). HPC experts work tediously to narrow the gap between domain ex-
perts implementations and the use of heterogeneous systems. A range of research-driven projects
has established diversified task-based support, employing various programming and runtime
features [14]. The task-based programming model has shown great potential in various appli-
cations [1, 2, 9]. In this model, the developer defines atomic tasks with the dependencies be-
tween them. A directed acyclic graph (DAG) represents the application. The runtime, which is
an intermediate software layer supporting this DAG execution, schedules tasks and data migra-
tions efficiently on all available cores while reducing the waiting time between tasks. Therefore,
the goal of DAG scheduling is to minimize the global completion time of the program, i.e. the
makespan. Various runtime systems capable of handling heterogeneous workloads have emerged
(Parsec [6], StarPU [4]). HeteroPrio [2] is a scheduler that is implemented in StarPU. It has been
designed for heterogeneous machines and is used by several applications showing significant im-
provements [3, 13]. HeteroPrio is a semi-automatic scheduler where users must provide priorities

Compas’2022 : Parallélisme / Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

for the different types of tasks that exist in their applications. A fully automatic version of this
scheduler that computes efficient priorities for HeteroPrio is proposed in [11]. HeteroPrio and its
automatic version are cheap and effective. However, they show a limitation which is the priority
assignment per type of task. Every application has a set of task types that will be used in different
stages of the scheduling. Setting a priority per type could hide relevant information related to a
given scheduling context. This also brings us to the limitation of the data structures that are used
to manage the ready tasks in the scheduler which are tied to the strategy of priorities per type.
This study aims to address the limitations raised and therefore proposes a novel scheduler based
on priority per task for a given processing unit. We define a data structure managing the ready
tasks in the system per priority and per processing unit type. Our objective is to minimize the
global completion time of task-based applications in heterogeneous environments thanks to good
scheduling decisions. The major contributions of this paper can be summarized as follow:

• We present a novel dynamic scheduler for heterogeneous systems based on priority scores
per task and per processing unit which are stored within a set of binary trees and managed
by the internal mechanisms of the scheduler.

• We propose heuristics based on rules that we set out that should be fulfilled during the
scheduling and evaluate the performance of the scheduler using emulated executions of
DAGs on diverse configurations.

The paper is organized as follows: In Section 2 we briefly analyze some related work. In Sec-
tion 3 we present our proposed scheduler. In Section 4 we describe the performance study with
emulated task-based applications and simulate the scheduling on different configurations of het-
erogeneous systems. Finally, Section 5 concludes.

2. Related work

The problem of scheduling on heterogeneous computing systems has been proven NP-complete
in general cases [8]. Numerous research works have proposed different scheduling algorithms.
Thoman et al. [14] divide them into three categories, namely static, dynamic, and hybrid schedul-
ing methods. The distribution of work at compile time is static scheduling, while the distribution
of work at runtime is dynamic scheduling. In general, one cannot have global visibility on the
entire DAG. This is why recent research has been focused on dynamic scheduling. Choi and al.
[10] propose dynamic scheduling that relies on a history-based Estimated-Execution-Time (EET)
for each task. The idea of this algorithm is to schedule each task on its fastest architecture. In some
cases, the scheduler ignores this rule and executes a task on a slower processor (e.g. in the case of
work starvation for a worker type).
HeteroPrio [2] is a scheduler designed for heterogeneous machines and implemented in StarPU.
It has shown its efficiency when used on several applications [3, 13]. HeteroPrio relies on a
priority assignment per type of task with respect to its performance on a processing unit (PU).

Figure 1: HeteroPrio scheduler overview

Figure 1 shows that tasks are dispatched
to buckets with respect to their priority.
Each task is executed on the most pri-
oritised available PU. However, this ap-
proach comes with a limitation. The dif-
ferent types of tasks are involved in vari-
ous stages of the execution. Setting a pri-
ority per type hides relevant information
related to a given scheduling scenario.

Compas’2022 : Parallélisme / Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

3. MulTreePrio scheduler

3.1. Context and notations
For a heterogeneous computing system, we are given a set of memory nodes denoted as M.

Figure 2: MulTreePrio scheduler overview

In our study, we see the main RAM of a com-
puting node as a single memory node despite
the NUMA effects but the approach remains
valid otherwise. m ∈ M can be either the
main RAM, a GPU-embedded memory or disk
memory. P is the set of processing units of all
types which could be for example {CPU, GPU}.
We note Pm ⊂ P the subset of processing units
tied to m ∈ M. Given this infrastructure illus-
trated in Figure 2, our scheduler will manage
ready tasks. A ready task is a task for which all
dependencies in the DAG are fulfilled. To store
the tasks and the necessary information about
each of them, we introduce a data structure
based on binary balanced trees. We note T the
set of trees managed by our scheduler. tm ∈ T

is a tree with ready tasks that can be computed
by any processing unit in Pm. The runtime sys-
tem has a set of workers denoted W that con-
sume tasks from the trees to execute them on
the dedicated processing unit. Each worker
w ∈ Wm picks its task from tm ∈ T and exe-
cutes them on any processing unit in Pm ⊂ P.
From this description, we have |T | = |M|, and
we have at least one worker per memory node
and expect |M| ≤ |P| ≤ |W|.
For a given newly ready task T and a given memory node m, the runtime system provides us
with numerous information about the scheduling context. The task can be executed on a set of
processing units tied to their respective memory nodes. By means of the data structure tracking
the tasks into our scheduler, at any instant of the scheduling processing, we have the number of
ready tasks present at that moment in the system that can be computed on the processing units
Pm ⊆ P. It is equal to |tm| but those tasks could be duplicated on several trees if there is more than a
memory node tied to the processing unit able to compute it. As the execution progresses, the DAG
is dynamically constructed. We suppose that we can retrieve the set of tasks that will be released
when T is computed, i.e., its successors, denoted succ(T). The successors could target different
processing units, therefore, we note succ(T , Pm) the subset of tasks that will be released for Pm.
This does not take into account the dependencies that could exist with other tasks. Therefore,
we use the same metric Normalized Out-Degree (NOD) as in [12]. This metric tells us if T is
critical to release or not. Moreover, we take into account the workload of the workers in Wm, i.e.
they are starving or not. We consider ξ(T , Pm) the execution time estimation for T computed by
processing units Pm. This estimation could be provided by a performance model from the runtime
system. We, thus, introduce the amount of work that will be released when T is computed denoted
Qsucc(T ,Pm). It is the busy time per processing units type. We consider the total busy time released
by succ(T) as the busy time on the best processing units type, noted Qsucc(T).

Compas’2022 : Parallélisme / Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

3.2. Heuristics
For a newly ready task T , our objective is to compute score(T ,m), ∀m ∈ M in order to push T
in all the trees that are respectively targeting processing units Pm which are able to compute the
task. Based on the different scores of all the tasks in a given tree, the scheduler picks the most
prioritized tasks. The score is defined as a combination of heuristics fulfilling a set of rules. We
illustrate different situations that can be encountered during the scheduling and from there, try
to define the expected behaviour for good scheduling decisions. We take into account mainly the
degree of suitability of a task for a processing unit, i.e. is it good on that processor, the amount of
work that will be released if a task will be executed and the load of the workers. In order to define
the rules, we consider two tasks T0 and T1, and p0 = prio(T0,m) and p1 = prio(T1,m).

– Rule 1: If T0 releases more work than T1,
we should have p0 ≥ p1.

Qsucc(T0) ≥ Qsucc(T1) ⇒ p0 ≥ p1 (1)

– Rule 2: For an equivalent amount of re-
leased work, if T0 has a larger number
of released tasks than T1, we should have
p0 ≥ p1.

(Qsucc(T0) = Qsucc(T1))

∧(|succ(T0)| ≥ |succ(T1)|) ⇒ p0 ≥ p1

(2)

– Rule 3: If T0 releases more work for starv-
ing workers than T1, we should have p0 ≥
p1.
(∃Wmi

⊆ W(succ(T0))/starving(Wmi
))

∧(Qsucc(T0,Pmi
) ≥ Qsucc(T1,Pmi

)) ⇒ p0 ≥ p1

(3)

– Rule 4: If T0 has a better speedup than T1
on Pm, or is less worse on these workers,
we should have p0 ≥ p1.

σ(T0, Pm) ≥ σ(T1, Pm) ⇒ p0 ≥ p1 (4)

– Rule 5: If T0 is expected to be longer than
T1 on Pm, we should have p0 ≥ p1.

ξ(T0, Pm) ≥ ξ(T1, Pm) ⇒ p0 ≥ p1 (5)

– Rule 6: If T0 is more critical than T1 (in
terms of dependencies), we should have
p0 ≥ p1.

NOD(T0) ≥ NOD(T1) ⇒ p0 ≥ p1 (6)

– Rule 7: If T1 can be computed by workers
that are starving and T0 cannot, we should
have p0 ≥ p1.

(∃Wmi
⊆ W(T1)/starving(Wmi

))

∧(Wmi
⊈ W(T0)) ⇒ p0 ≥ p1

(7)

Given the above rules, we propose different heuristics normalized between 0 and 1 (more detail
in the appendix). For a given task T and a memory node m, there is a heuristic that satisfies the
fixed rules. The priority is calculated as follow:

score(T ,m) =

∑|B|
i=1 Bi(T ,m) −

∑|P |
j=1 Pj(T ,m) + |P |

|B|+ |P |
, (8)

with Bi ∈ [0, 1] , ∀i bonuses and Pj ∈ [0, 1] , ∀j penalties.

3.3. Other heuristics
Speedup factor: During our study, we noticed that at the end of a scheduling or more generally
when workers are starving, it becomes more difficult to find good scheduling decisions. The
trees have fewer tasks and they could be the ones that were left last in the trees, possibly having
the worst scores. We do not want to risk workers choosing slow implementations of tasks. It
will inevitably extend the makespan. To be more selective, we present a heuristic that makes the
scheduler decide if a processing unit type is not the best at executing this task, we only accept to
let it compute the task if a factor of speedup is guaranteed. The proposed heuristic is as follow: if
the remaining work for the workers of a certain processing unit is greater than the cost of a task,
we accept computing the task on this processing unit, therefore, we avoid an idle time and gain
on the total completion time of the application.

Compas’2022 : Parallélisme / Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

Critical path: Since we are in a simulated environment, we studied the profitability of adding a
heuristic based on the critical path. In a recent work, Beamont et al. [5] present ALAP-schedule
(As Late As Possible) on Cholesky factorization in a homogeneous model without communication
costs. They consider the reversed DAG therefore tasks are scheduled according to their distance
to the end of the critical path. In our work, we use a slightly different heuristic, which is the latest
starting time without delay. To obtain this number, we first calculated the critical path with a
static technique by traversing the graph on two phases, a forward pass for computing the earliest
starting and finish time then a backward pass for computing the latest starting and finish time.
We detected the critical tasks (i.e. their earliest and latest starting times are equal) that, if delayed,
would lead to a longer makespan. Based on that information, we set the degree of criticality of a
task as [1 - (latest starting time / total time of execution)]. This allows us to prioritize the critical
tasks and compare the scheduler with its dynamic version and see if even with less information
on the whole DAG, we can find good scheduling decisions.

4. Experiments

In order to evaluate the proposed scheduler, we simulate the execution of 3 different emulated
applications within a task-based runtime system [7]. This simulation does not take into account
data communication between nodes. We simulated Cholesky factorization which is a widespread
matrix decomposition in linear algebra, and two numerical methods for the computation of long-
ranged forces in the n-body problem (tree-based method and Fast multipole method). We simu-
lated the scheduling of the DAGs and compared the results of Heteroprio scheduler, our scheduler
MulTreePrio, a static version of our scheduler with a critical path heuristic and a static scheduler
based only on the critical path heuristic.

Configurations 1 2 3
Number of CPUs 16 18 20
Number of GPUs 4 10 50

Table 1: Configurations of the het-
erogeneous computing system in
the simulation

For the simulation, we tested the scheduler on different con-
figurations of heterogeneous systems. The Table 1 shows
the 3 configurations used. We note that we are in simula-
tion environment, thus, we tested different configurations
(even ones that do not exist in real-life systems) in order to
observe the behavior of the schedulers and see their limits.
We present two different test cases on the 3 emulated appli-
cations (details in Table 2).
We report in Figure 3 the summary of the results of our simulation on the 3 applications with the
different test cases while varying the configurations of the number of CPUs and GPUs. Prioritizing
costly tasks to be computed on the best PU is not possible for the CP-based scheduler, thus, its re-
sults are worse than the others. Here, we show the importance of the performance of tasks and the
impact of this information in taking good scheduling decisions. The scheduling with MulTreePrio
of the emulated Cholesky factorization is better than HeteroPrio. When we increase the resources
of the heterogeneous system, MulTreePrio, records a makespan very close and sometimes equal to
the length of the critical path. For the tree-based method, the dependencies in the DAG are huge.
We can see in Figure 3 (b) that MulTreePrio is approximately 3,5 times faster than HeteroPrio. The
priority system per task reaches its limit in this case because the costs of the tasks are very close
except for one of them, thus, finding the right priorities is not easy or even profitable anymore.
However, for the second test case, we present different costs for the task types, thus they can be
prioritized more easily, even though they have the same relative speedup on GPU equal to 10. The
results of MulTreePrio are better than HeteroPrio. We recall that HeteroPrio was designed in the
context of optimizing the fast multipole method. Therefore, the results of the scheduling are more
or less close and this implies that MulTreePrio is able to make good scheduling decisions. Given

Compas’2022 : Parallélisme / Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

the fact that the DAG has few dependencies, the heuristic of the critical path is less impacting. The
DAG of the FMM is very detached consequently the length of the critical path with an infinity of
resources is very short.

Conf.1

Conf.2

Conf.3
0

50

100

150

200

m
ak

es
pa

n

(a) Cholesky Factorization 1

Conf.1

Conf.2

Conf.3
0

200

400

600

(b) Tree-based method 1

Conf.1

Conf.2

Conf.3
0

50

100

150

(c) FMM 1

Conf.1

Conf.2

Conf.3
0

100

200

300

m
ak

es
pa

n

(d) Cholesky Factorization 2

Conf.1

Conf.2

Conf.3
0

50

100

150

(e) Tree-based method 2

Conf.1

Conf.2

Conf.3
0

50

100

150

(f) FMM 2

HeteroPrio MulTreePrio MulTreePrio+CP CP-based scheduler CP length

Figure 3: Comparison of the makespans of the 4 schedulers while varying the number of CPUs
and GPUs according to the Table 1. The minimum achievable makespan is the CP length.

5. Conclusion

Dynamic scheduling of task-based applications on heterogeneous systems is an NP-complete
problem to whom different algorithms were proposed. Despite all the efforts, having a minimized
total makespan of an application is not always guaranteed. Among others, this comes down to the
fact that the DAGs from an application to another varies considerably and this impact directly the
scheduling decisions. We have shown that our scheduler makes overall good scheduling results
thanks to its fast and efficient heuristics. The fact that these heuristics were based on a set of rules
covering different issues that may be encountered while scheduling has enhanced the robustness
of the scheduler in front of different DAGs. In the future work, we aim to integrate this strategy
into a scheduler and benchmark real-life applications dynamic scheduling.

Acknowledgements

This work is supported by the TEXTAROSSA project G.A. n.956831 part of the EuroHPC initiative.

Compas’2022 : Parallélisme / Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

Bibliographie

1. Agullo (E.), Bramas (B.), Coulaud (O.), Darve (E.), Messner (M.) and Takahashi (T.). – Task-
based fmm for multicore architectures. SIAM Journal on Scientific Computing, 2014.

2. Agullo (E.), Bramas (B.), Coulaud (O.), Darve (E.), Messner (M.) and Takahashi (T.). – Task-
based fmm for heterogeneous architectures. Concurrency and Computation: Practice and Experi-
ence, vol. 28, n9, 2016, pp. 2608–2629.

3. Agullo (E.), Buttari (A.), Guermouche (A.) and Lopez (F.). – Task-based multifrontal qr solver
for gpu-accelerated multicore architectures. – In 2015 IEEE 22nd International Conference on
High Performance Computing (HiPC), pp. 54–63, 2015.

4. Augonnet (C.), Thibault (S.), Namyst (R.) and Wacrenier (P.-A.). – StarPU: a unified platform
for task scheduling on heterogeneous multicore architectures. Concurrency and Computation:
Practice and Experience, vol. 23, n2, 2011, pp. 187–198.

5. Beaumont (O.), Langou (J.), Quach (W.) and Shilova (A.). – A makespan lower bound for the
tiled cholesky factorization based on alap schedule. In: Malawski M., Rzadca K. (eds) Euro-Par
2020: Parallel Processing. Euro-Par 2020. Lecture Notes in Computer Science, vol 12247. Springer,
Cham., 2020.

6. Bosilca (G.), Bouteiller (A.), Danalis (A.), Faverge (M.), Hérault (T.) and Dongarra (J. J.). –
Parsec: Exploiting heterogeneity to enhance scalability. Computing in Science & Engineering,
vol. 15, n6, 2013, pp. 36–45.

7. Bramas (B.). – SPETABARU: A Task-based Runtime System with Speculative Execution Ca-
pability. – In SIAM CSE 2019 - SIAM Conference on Computational Science and Engineering,
Spokane, United States, février 2019.

8. Brucker (P.) and Knust (S.). – Complexity results for scheduling problems, 2009. http://www2.
informatik.uni-osnabrueck.de/knust/class/.

9. Carpaye (J. M. C.), Roman (J.) and Brenner (P.). – Design and analysis of a task-based par-
allelization over a runtime system of an explicit finite-volume CFD code with adaptive time
stepping. Journal of Computational Science, 2018.

10. Choi (H.), Son (D.), Kang (S.), Kim (J.), Lee (H.-H.) and Kim (C.-H.). – An efficient scheduling
scheme using estimated execution time for heterogeneous computing systems. The Journal of
Supercomputing, vol. 65, 08 2013.

11. Flint (C.) and Bramas (B.). – Finding new heuristics for automated task prioritizing in hetero-
geneous computing, 2020. https://hal.inria.fr/hal-02993015/document.

12. Lin (H.), Li (M.-F.), Jia (C.-F.), Liu (J.-N.) and An (H.). – Degree-of-node task scheduling of
fine-grained parallel programs on heterogeneous systems. Journal of Computer Science and Tech-
nology, vol. 34, n5, 2019, pp. 1096–1108.

13. Lopez (F.) and Duff (I.). – Task-Based Sparse Direct solver for Symmetric Indefinite Systems,
2018. 10th International Workshop on Parallel Matrix Algorithms and Applications (PMAA),
mini-symposium on task-based programming for scientific computing.

14. Thoman (P.), Dichev (K.), Heller (T.), Iakymchuk (R.), Aguilar (X.), Hasanov (K.), Gschwandt-
ner (P.), Lemarinier (P.), Markidis (S.), Jordan (H.), Fahringer (T.), Katrinis (K.), Laure (E.)
and Nikolopoulos (D. S.). – A taxonomy of task-based parallel programming technologies for
high-performance computing. J. Supercomput., vol. 74, n4, apr 2018, p. 1422–1434.

Compas’2022 : Parallélisme / Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

A. Metrics:

The NOD is given by the following formula:

NOD(T) =
∑

si∈succ(T)

1

|pred(si)|
(9)

The metrics relative the released amount of work when a task is computed are defined as follow:
Qsucc(T ,Pm) =

∑
s∈succ(T)

ξ(s, Pm)

Qsucc(T) =
∑

s∈succ(T)

min
∀m∈Ms

ξ(s, Pm)
(10)

We compute the relative speedup of T computed by Pm. It is defined as follow:

σ(T , Pm) =
ξworst(T , Pm/worst)

ξ(T , Pm)
(11)

where Pm/worst is the processing units type that computes T in the slowest execution time com-
pared to other possible Pm. In the worst case, we have σ(T , Pm) = 1, i.e. no speedup.

B. Heuristics formulas:

For a given task T and a memory node m, we propose heuristics that satisfy the fixed rules. The
following entities are normalized between 0 and 1.

• To satisfy the rules 1 and 2, we consider the released amount of work normalized by the
largest amount of work that has been released so far weighted by the number of successors.

B1(T ,m) = 1− e
−

[
Qsucc(T)
Qhighest

×|succ(T)|

]
(12)

• To satisfy the rule 3, we consider the sum of the released amount of work for each starving
workers weighted by the number of released tasks.

B2(T ,m) =

∑
mi∈M

1− e
−

Qsucc(T ,Pmi
)

Qhighest/Pmi

×|succ(T ,Pmi
)|

× starving(Wmi
)

|M|
(13)

• To satisfy the rule 4, we consider the speedup σ(T , Pm) ≥ 1 and we normalize it as follow to
underline if it is a really good speedup (very close to 1) or if it is average or with no speedup
(equal to 0).

B3(T ,m) = 1−
1

σ(T , Pm)
(14)

• To satisfy the rule 5, we consider the time the task will take when executed on Pm if it has a
good speedup otherwise it is 0. Thus, we calculate the ratio:

B4(T ,m) =
ξ(T , Pm)

ξlongest/Pm
× σ(T , Pm) − 1

σbest(T) − 1
(15)

• To satisfy the rule 6, we consider the criticality of the task based on the metric NOD(T) and
we calculate the ratio:

B5(T ,m) =
NOD(T)

NODhighest/Pm

(16)

• To satisfy the rule 7, we consider a penalty P for the current worker when there is other
workers starving and have a relatively good speedup. P increases the more the speedup on

Compas’2022 : Parallélisme / Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

other starving workers increases and inversely.

P1 =

∑
mi∈M,mi ̸=m

[
1− 1

σ(T ,Pmi
)

]
× starving(Wmi

)

|M|− 1
(17)

C. Simulation details:

Each application has a set of task, i.e. task types. Each task is a heterogeneous one and thus has
CPU cost and GPU cost. It is the execution time estimated for the task on each processing unit.
For the simulation of our scheduler, we changed the costs of the tasks for all the applications. We
fixed for the simulated DAGs the costs on CPU and GPU. For Heteroprio scheduler, we also need
to have the priorities per type of task for each processing unit. It is a configuration that can be seen
as the order of iteration on the workers (0 means first or more prioritized). We show in the Table
2 for each task the speedup on GPU over CPU to highlight the gain compared to other tasks. For
example, for the first test case, for the Cholesky factorization, a GEMM task costs 0.7 on CPU and
0.1 on GPU, hence, the speedup of this task on GPU is x7. It is more prioritized to be executed on
GPU, i.e. its GPU priority is equal to 0.

First test case Second test case
type of
tasks

Costs Speedups Priorities Costs Speedups Priorities
CPU GPU CPU GPU CPU GPU CPU GPU

Cholesky
factorization

GEMM
SYRK

POTRF
TRSM

0.7
1.3
1.2
1.

0.1
0.3

0.35
0.3

7
4.3
3.4
3.3

3
2
1
0

0
1
2
3

1.
5.5
2.
3.

1.1
0.8
0.2

0.05

0.9
6.8
10
60

0
1
2
3

3
2
1
0

Tree
based

method

In-Cell
P2C
C2P
N2N

1.
1.2
1.3
0.7

0.3
0.35
0.3
0.1

3.3
3.42
4.3
7

0
1
2
3

3
2
1
0

2.
5.

0.11
0.08

0.2
0.5
1.1
0.8

10
10
10
10

2
3
1
0

1
0
3
2

Fast
multipole
method

P2M
M2M
M2L
M2L’
L2L
L2P
P2P
P2P’

1.
2.
5.
1.
2.
1.
8.
5.

0.8
1.5
1.
0.5
1.5
0.8
0.5
0.3

1.25
1.3
5
2

1.3
1.25
16

16.6

0
1
2
3
4
5
6
7

7
6
2
3
4
5
0
1

0.5
3.
5.
1.
3.
1.
4.

2.5

0.8
0.5
1.
0.5
0.5
0.8
0.5
0.3

0.625
6.
5.
2.
6.

1.25
8.

8.3

0
4
3
2
5
1
6
7

7
3
4
5
2
6
1
0

Table 2: Task graph properties for the different test cases: the Cholesky factorization, a tree-based
method, and the fast multipole method. The priority columns correspond to the Heteroprio con-
figuration, which can be seen as the order of iteration on the workers (0 means first).

Compas’2022 : Parallélisme / Architecture/ Système
MIS/UPJV - Amiens France, 5-8 juillet 2022

D. Scheduling traces:

(a) Color legend for FMM tasks:
M2M, L2L, P2M, M2L, M2L’, P2P, P2P’

(b) Color legend for Cholesky tasks:
GEMM, TRSM, SYRK, POTFR

(c) Trace of FMM test case 1 (d) Trace of Cholesky test case 2

Figure 4: Scheduling traces for the FMM 1st test case and Cholesky factorization 2nd test cases.
The configuration is 16 CPUs and 4 GPUs (the last 4 rows). Comparison of HeteroPrio, MulTreeP-
rio and MulTreePrio+CP a static version of our scheduler with a critical path heuristic.

