198 research outputs found

    Structural and doping effects in the half-metallic double perovskite A2A_2CrWO6_6

    Full text link
    he structural, transport, magnetic and optical properties of the double perovskite A2A_2CrWO6_6 with A=Sr, Ba, CaA=\text{Sr, Ba, Ca} have been studied. By varying the alkaline earth ion on the AA site, the influence of steric effects on the Curie temperature TCT_C and the saturation magnetization has been determined. A maximum TC=458T_C=458 K was found for Sr2_2CrWO6_6 having an almost undistorted perovskite structure with a tolerance factor f1f\simeq 1. For Ca2_2CrWO6_6 and Ba2_2CrWO6_6 structural changes result in a strong reduction of TCT_C. Our study strongly suggests that for the double perovskites in general an optimum TCT_C is achieved only for f1f \simeq 1, that is, for an undistorted perovskite structure. Electron doping in Sr2_2CrWO6_6 by a partial substitution of Sr2+^{2+} by La3+^{3+} was found to reduce both TCT_C and the saturation magnetization MsM_s. The reduction of MsM_s could be attributed both to band structure effects and the Cr/W antisites induced by doping. Band structure calculations for Sr2_2CrWO6_6 predict an energy gap in the spin-up band, but a finite density of states for the spin-down band. The predictions of the band structure calculation are consistent with our optical measurements. Our experimental results support the presence of a kinetic energy driven mechanism in A2A_2CrWO6_6, where ferromagnetism is stabilized by a hybridization of states of the nonmagnetic W-site positioned in between the high spin Cr-sites.Comment: 14 pages, 10 figure

    Sequence and Phylogenetic Analysis of SSU rRNA Gene of Five Microsporidia

    Get PDF
    The complete small subunit rRNA (SSU rRNA) gene sequences of five microsporidia including Nosemaheliothidis, and four novel microsporidia isolated from Pieris rapae, Phyllobrotica armta, Hemerophila atrilineata, and Bombyx mori, respectively, were obtained by PCR amplification, cloning, and sequencing. Two phylogenetic trees based on SSU rRNA sequences had been constructed by using Neighbor-Joining of Phylip software and UPGMA of MEGA4.0 software. The taxonomic status of four novel microsporidia was determined by analysis of phylogenetic relationship, length, G+C content, identity, and divergence of the SSU rRNA sequences. The results showed that the microsporidia isolated from Pieris rapae, Phyllobrotica armta, and Hemerophila atrilineata have close phylogenetic relationship with the Nosema, while another microsporidium isolated from Bombyx mori is closely related to the Endoreticulatus. So, we temporarily classify three novel species of microsporidia to genus Nosema, as Nosema sp. PR, Nosema sp. PA, Nosema sp. HA. Another is temporarily classified into genus Endoreticulatus, as Endoreticulatus sp. Zhenjiang. The result indicated as well that it is feasible and valuable to elucidate phylogenetic relationships and taxonomic status of microsporidian species by analyzing information from SSU rRNA sequences of microsporidia

    Cost-effectiveness of different human papillomavirus vaccines in Singapore

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human papillomavirus (HPV) vaccines are widely available and there have been studies exploring their potential clinical impact and cost-effectiveness. However, few studies have compared the cost-effectiveness among the 2 main vaccines available - a bivalent vaccine against HPV 16/18, and a quadrivalent vaccine against 6/11/16/18. We explore the cost-effectiveness of these two HPV vaccines in tropical Singapore.</p> <p>Methods</p> <p>We developed a Markov state-transition model to represent the natural history of cervical cancer to predict HPV infection, cancer incidence, mortality, and costs. Cytologic screening and treatment of different outcomes of HPV infection were incorporated. Vaccination was provided to a cohort of 12-year old females in Singapore, followed up until death. Based on available vaccines on the market, the bivalent vaccine had increased effectiveness against a wider range of HPV types, while the quadrivalent vaccine had effectiveness against genital warts. Incremental cost-effectiveness ratios (ICER) compared vaccination to no-vaccination, and between the two vaccines. Sensitivity analyses explored differences in vaccine effectiveness and uptake, and other key input parameters.</p> <p>Results</p> <p>For the no vaccination scenario, 229 cervical cancer cases occurred over the cohort's lifetime. The total discounted cost per individual due to HPV infection was SGD275with28.54discountedlifeyears.With100275 with 28.54 discounted life-years. With 100% vaccine coverage, the quadrivalent vaccine reduced cancers by 176, and had an ICER of SGD12,866 per life-year saved. For the bivalent vaccine, 197 cancers were prevented with an ICER of 12,827perlifeyearsaved.Comparingthebivalenttothequadrivalentvaccine,theICERwas12,827 per life-year saved. Comparing the bivalent to the quadrivalent vaccine, the ICER was 12,488 per life-year saved. However, the cost per QALY saved for the quadrivalent vaccine compared to no vaccine was 9,071,whileitwas9,071, while it was 10,392 for the bivalent vaccine, with the quadrivalent vaccine dominating the bivalent vaccine due to the additional QALY effect from reduction in genital warts. The overall outcomes were most sensitive to vaccine cost and coverage.</p> <p>Conclusion</p> <p>HPV vaccination is a cost-effective strategy, and should be considered a possible strategy to reduce the impact of HPV infection.</p

    An integrative approach to discovering cryptic species within the Bemisia tabaci whitefly species complex

    Get PDF
    Bemisia tabaci is a cryptic whitefly-species complex that includes some of the most damaging pests and plant-virus vectors of a diverse range of food and fibre crops worldwide. We combine experimental evidence of: (i) differences in reproductive compatibility, (ii) hybrid verification using a specific nuclear DNA marker and hybrid fertility confirmation and (iii) high-throughput sequencing-derived mitogenomes, to show that the “Mediterranean” (MED) B. tabaci comprises at least two distinct biological species; the globally invasive MED from the Mediterranean Basin and the “African silver-leafing” (ASL) from sub-Saharan Africa, which has no associated invasion records. We demonstrate that, contrary to its common name, the “ASL” does not induce squash silver-leafing symptoms and show that species delimitation based on the widely applied 3.5% partial mtCOI gene sequence divergence threshold produces discordant results, depending on the mtCOI region selected. Of the 292 published mtCOI sequences from MED/ASL groups, 158 (54%) are low quality and/or potential pseudogenes. We demonstrate fundamental deficiencies in delimiting cryptic B. tabaci species, based solely on partial sequences of a mitochondrial barcoding gene. We advocate an integrative approach to reveal the true species richness within cryptic species complexes, which is integral to the deployment of effective pest and disease management strategies

    Analyses of zebrafish and Xenopus oocyte maturation reveal conserved and diverged features of translational regulation of maternal cyclin B1 mRNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vertebrate development relies on the regulated translation of stored maternal mRNAs, but how these regulatory mechanisms may have evolved to control translational efficiency of individual mRNAs is poorly understood. We compared the translational regulation and polyadenylation of the cyclin B1 mRNA during zebrafish and <it>Xenopus </it>oocyte maturation. Polyadenylation and translational activation of cyclin B1 mRNA is well characterized during <it>Xenopus </it>oocyte maturation. Specifically, <it>Xenopus </it>cyclin B1 mRNA is polyadenylated and translationally activated during oocyte maturation by proteins that recognize the conserved AAUAAA hexanucleotide and U-rich Cytoplasmic Polyadenylation Elements (CPEs) within cyclin B1 mRNA's 3'<b>U</b>n<b>T</b>ranslated <b>R</b>egion (3'<b>UTR</b>).</p> <p>Results</p> <p>The zebrafish cyclin B1 mRNA was polyadenylated during zebrafish oocyte maturation. Furthermore, the zebrafish cyclin B1 mRNA's 3'UTR was sufficient to stimulate translation of a reporter mRNA during zebrafish oocyte maturation. This stimulation required both AAUAAA and U-rich CPE-like sequences. However, in contrast to AAUAAA, the positions and sequences of the functionally defined CPEs were poorly conserved between <it>Xenopus </it>and zebrafish cyclin B1 mRNA 3'UTRs. To determine whether these differences were relevant to translation efficiency, we analyzed the translational activity of reporter mRNAs containing either the zebrafish or <it>Xenopus </it>cyclin B1 mRNA 3'UTRs during both zebrafish and <it>Xenopus </it>oocyte maturation. The zebrafish cyclin B1 3'UTR was quantitatively less effective at stimulating polyadenylation and translation compared to the <it>Xenopus </it>cyclin B1 3'UTR during both zebrafish and <it>Xenopus </it>oocyte maturation.</p> <p>Conclusion</p> <p>Although the factors that regulate translation of maternal mRNAs are highly conserved, the target sequences and overall sequence architecture within the 3'UTR of the cyclin B1 mRNA have diverged to affect translational efficiency, perhaps to optimize levels of cyclin B1 protein required by these different species during their earliest embryonic cell divisions.</p

    African ancestry of New World, Bemisia tabaci-whitefly species

    Get PDF
    Bemisia tabaci whitefly species are some of the world’s most devastating agricultural pests and plant-virus disease vectors. Elucidation of the phylogenetic relationships in the group is the basis for understanding their evolution, biogeography, gene-functions and development of novel control technologies. We report here the discovery of five new Sub-Saharan Africa (SSA) B. tabaci putative species, using the partial mitochondrial cytochrome oxidase 1 gene: SSA9, SSA10, SSA11, SSA12 and SSA13. Two of them, SSA10 and SSA11 clustered with the New World species and shared 84.8‒86.5% sequence identities. SSA10 and SSA11 provide new evidence for a close evolutionary link between the Old and New World species. Re-analysis of the evolutionary history of B. tabaci species group indicates that the new African species (SSA10 and SSA11) diverged from the New World clade c. 25 million years ago. The new putative species enable us to: (i) re-evaluate current models of B. tabaci evolution, (ii) recognise increased diversity within this cryptic species group and (iii) re-estimate divergence dates in evolutionary time

    Cost-effectiveness of human papillomavirus vaccination for prevention of cervical cancer in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human papillomavirus (HPV) infection has been shown to be a major risk factor for cervical cancer. Vaccines against HPV-16 and HPV-18 are highly effective in preventing type-specific HPV infections and related cervical lesions. There is, however, limited data available describing the health and economic impacts of HPV vaccination in Taiwan. The objective of this study was to assess the cost-effectiveness of prophylactic HPV vaccination for the prevention of cervical cancer in Taiwan.</p> <p>Methods</p> <p>We developed a Markov model to compare the health and economic outcomes of vaccinating preadolescent girls (at the age of 12 years) for the prevention of cervical cancer with current practice, including cervical cytological screening. Data were synthesized from published papers or reports, and whenever possible, those specific to Taiwan were used. Sensitivity analyses were performed to account for important uncertainties and different vaccination scenarios.</p> <p>Results</p> <p>Under the assumption that the HPV vaccine could provide lifelong protection, the massive vaccination among preadolescent girls in Taiwan would lead to reduction in 73.3% of the total incident cervical cancer cases and would result in a life expectancy gain of 4.9 days or 8.7 quality-adjusted life days at a cost of US324ascomparedtothecurrentpractice.Theincrementalcosteffectivenessratio(ICER)wasUS324 as compared to the current practice. The incremental cost-effectiveness ratio (ICER) was US23,939 per life year gained or US13,674perqualityadjustedlifeyear(QALY)gainedgiventhediscountrateof313,674 per quality-adjusted life year (QALY) gained given the discount rate of 3%. Sensitivity analyses showed that this ICER would remain below US30,000 per QALY under most conditions, even when vaccine efficacy was suboptimal or when vaccine-induced immunity required booster shots every 13 years.</p> <p>Conclusions</p> <p>Although gains in life expectancy may be modest at the individual level, the results indicate that prophylactic HPV vaccination of preadolescent girls in Taiwan would result in substantial population benefits with a favorable cost-effectiveness ratio. Nevertheless, we should not overlook the urgency to improve the compliance rate of cervical screening, particularly for older individuals.</p

    Characterization of global transcription profile of normal and HPV-immortalized keratinocytes and their response to TNF treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Persistent infection by high risk HPV types (e.g. HPV-16, -18, -31, and -45) is the main risk factor for development of cervical intraepithelial neoplasia and cervical cancer. Tumor necrosis factor (TNF) is a key mediator of epithelial cell inflammatory response and exerts a potent cytostatic effect on normal or HPV16, but not on HPV18 immortalized keratinocytes. Moreover, several cervical carcinoma-derived cell lines are resistant to TNF anti-proliferative effect suggesting that the acquisition of TNF-resistance may constitute an important step in HPV-mediated carcinogenesis. In the present study, we compared the gene expression profiles of normal and HPV16 or 18 immortalized human keratinocytes before and after treatment with TNF for 3 or 60 hours.</p> <p>Methods</p> <p>In this study, we determined the transcriptional changes 3 and 60 hours after TNF treatment of normal, HPV16 and HPV18 immortalized keratinocytes by microarray analysis. The expression pattern of two genes observed by microarray was confirmed by Northern Blot. NF-κB activation was also determined by electrophoretic mobility shift assay (EMSA) using specific oligonucleotides and nuclear protein extracts.</p> <p>Results</p> <p>We observed the differential expression of a common set of genes in two TNF-sensitive cell lines that differs from those modulated in TNF-resistant ones. This information was used to define genes whose differential expression could be associated with the differential response to TNF, such as: <it>KLK7 </it>(<it>kallikrein 7</it>), <it>SOD2 </it>(<it>superoxide dismutase 2</it>), <it>100P </it>(<it>S100 calcium binding protein P</it>), <it>PI3 </it>(<it>protease inhibitor 3, skin-derived</it>), <it>CSTA </it>(<it>cystatin A</it>), <it>RARRES1 </it>(<it>retinoic acid receptor responder 1</it>), and <it>LXN </it>(<it>latexin</it>). The differential expression of the <it>KLK7 </it>and <it>SOD2 </it>transcripts was confirmed by Northern blot. Moreover, we observed that <it>SOD2 </it>expression correlates with the differential NF-κB activation exhibited by TNF-sensitive and TNF-resistant cells.</p> <p>Conclusion</p> <p>This is the first in depth analysis of the differential effect of TNF on normal and HPV16 or HPV18 immortalized keratinocytes. Our findings may be useful for the identification of genes involved in TNF resistance acquisition and candidate genes which deregulated expression may be associated with cervical disease establishment and/or progression.</p

    Major histocompatibility complex class I molecules protect motor neurons from astrocyte-induced toxicity in amyotrophic lateral sclerosis

    Get PDF
    Astrocytes isolated from individuals with amyotrophic lateral sclerosis (ALS) are toxic to motor neurons (MNs) and play a non–cell autonomous role in disease pathogenesis. The mechanisms underlying the susceptibility of MNs to cell death remain unclear. Here we report that astrocytes derived from either mice bearing mutations in genes associated with ALS or human subjects with ALS reduce the expression of major histocompatibility complex class I (MHCI) molecules on MNs; reduced MHCI expression makes these MNs susceptible to astrocyte-induced cell death. Increasing MHCI expression on MNs increases survival and motor performance in a mouse model of ALS and protects MNs against astrocyte toxicity. Overexpression of a single MHCI molecule, HLA-F, protects human MNs from ALS astrocyte–mediated toxicity, whereas knockdown of its receptor, the killer cell immunoglobulin-like receptor KIR3DL2, on human astrocytes results in enhanced MN death. Thus, our data indicate that, in ALS, loss of MHCI expression on MNs renders them more vulnerable to astrocyte-mediated toxicity
    corecore