1,070 research outputs found

    Dissipative Processes in the Early Universe: Bulk Viscosity

    Full text link
    In this talk, we discuss one of the dissipative processes which likely take place in the Early Universe. We assume that the matter filling the isotropic and homogeneous background is to be described by a relativistic viscous fluid characterized by an ultra-relativistic equation of state and finite bulk viscosity deduced from recent lattice QCD calculations and heavy-ion collisions experiments. We concentrate our treatment to bulk viscosity as one of the essential dissipative processes in the rapidly expanding Early Universe and deduce the dependence of the scale factor and Hubble parameter on the comoving time tt. We find that both scale factor and Hubble parameter are finite at t=0t=0, revering to absence of singularity. We also find that their evolution apparently differs from the one resulting in when assuming that the background matter is an ideal and non-viscous fluid.Comment: 8 pages, 2 eps figure, Invited talk given at the 7th international conference on "Modern Problems of Nuclear Physics", 22-25 September 2009, Tashkent-Uzbekista

    Matter-Antimatter Asymmetry in the Large Hadron Collider

    Full text link
    The matter-antimatter asymmetry is one of the greatest challenges in the modern physics. The universe including this paper and even the reader him(her)self seems to be built up of ordinary matter only. Theoretically, the well-known Sakharov's conditions remain the solid framework explaining the circumstances that matter became dominant against the antimatter while the universe cools down and/or expands. On the other hand, the standard model for elementary particles apparently prevents at least two conditions out of them. In this work, we introduce a systematic study of the antiparticle-to-particle ratios measured in various NNNN and AAAA collisions over the last three decades. It is obvious that the available experimental facilities turn to be able to perform nuclear collisions, in which the matter-antimatter asymmetry raises from ∼0\sim 0% at AGS to ∼100\sim 100% at LHC. Assuming that the final state of hadronization in the nuclear collisions takes place along the freezeout line, which is defined by a constant entropy density, various antiparticle-to-particle ratios are studied in framework of the hadron resonance gas (HRG) model. Implementing modified phase space and distribution function in the grand-canonical ensemble and taking into account the experimental acceptance, the ratios of antiparticle-to-particle over the whole range of center-of-mass-energies are very well reproduced by the HRG model. Furthermore, the antiproton-to-proton ratios measured by ALICE in pppp collisions is also very well described by the HRG model. It is likely to conclude that the LHC heavy-ion program will produce the same particle ratios as the pppp program implying the dynamics and evolution of the system would not depend on the initial conditions. The ratios of bosons and baryons get very close to unity indicating that the matter-antimatter asymmetry nearly vanishes at LHC.Comment: 9 pages, 5 eps-figures, revtex4-styl

    Effects of quantum gravity on the inflationary parameters and thermodynamics of the early universe

    Full text link
    The effects of generalized uncertainty principle (GUP) on the inflationary dynamics and the thermodynamics of the early universe are studied. Using the GUP approach, the tensorial and scalar density fluctuations in the inflation era are evaluated and compared with the standard case. We find a good agreement with the Wilkinson Microwave Anisotropy Probe data. Assuming that a quantum gas of scalar particles is confined within a thin layer near the apparent horizon of the Friedmann-Lemaitre-Robertson-Walker universe which satisfies the boundary condition, the number and entropy densities and the free energy arising form the quantum states are calculated using the GUP approach. A qualitative estimation for effects of the quantum gravity on all these thermodynamic quantities is introduced.Comment: 15 graghes, 7 figures with 17 eps graph

    Deconfinement and freezeout boundaries in equilibrium thermal models

    Full text link
    In different approaches, the temperature-baryon density plane of QCD matter is studied for deconfinement and chemical freezeout boundaries. Results from various heavy-ion experiments are compared with the recent lattice simulations, the effective QCD-like Polyakov linear-sigma model, and the equilibrium thermal models. Along the entire freezeout boundary, there is an excellent agreement between the thermal model calculations and the experiments. Also, the thermal model calculations agree well with the estimations deduced from the Polyakov linear-sigma model (PLSM). At low baryonic density or high energies, both deconfinement and chemical freezeout boundaries are likely coincident and therefore the agreement with the lattice simulations becomes excellent as well, while at large baryonic density, the two boundaries become distinguishable forming a phase where hadrons and quark-gluon plasma likely coexist.Comment: 8 pages, 2 figures, accepted for publication in AHE

    Thermodynamics of viscous Matter and Radiation in the Early Universe

    Full text link
    Assuming that the background geometry is filled with free gas consisting of matter and radiation and no phase transitions being occurred in the early Universe, we discuss the thermodynamics of this {\it closed} system using classical approaches. We find that essential cosmological quantities, such as Hubble parameter HH, scale factor aa and curvature parameter kk, can be derived from this simple model, which on one hand fulfills and entirely obeys the laws of thermodynamics. On the other hand, the results are compatible with the Friedmann-Lemaitre-Robertson-Walker model and the Einstein field equations. The inclusion of finite bulk viscosity coefficient derives to important changes in all these cosmological quantities. Accordingly, our picture about the evolution of the Universe and its astrophysical consequences seems to be a subject of a radical revision. We find that kk strongly depends on the thermodynamics of background matter. The time scale, at which negative curvature might take place, depends on the relation between the matter content and the total energy. Using quantum and statistical approaches, we assume that the size of the Universe is given by the volume occupied one particle and one photon. Different types of their interactions are taken into account. Expressions for HH and aa are introduced. Therefore, the expansion of the Universe turns to be accessible.Comment: 9 pages, 2 figures (3 eps graphs

    The way forward to public health in Gulf Cooperation Council (GCC) countries: a need for public health systems and law

    Get PDF
    Introduction: Public health systems in the Gulf Cooperation Council (GCC) Countries are not well established. The existing systems do not match with the current health challenges and with the use of innovative technology in healthcare (diagnosis, treatment or rehabilitation). This paper is intended to give an overview of the public health situation in these countries. It discusses the need for effective and integrated system of public health laws that plays important role in addressing high priorities in public health. Conclusion: The GCC countries have the infrastructure for estab¬lishing a national public health system. However it needs an effective integrated and organized mechanism to shape this system; based on acceptable guidelines and criteria in such a way that they are institutional and capable of meeting the population needs. This system should be cost- effective and investment in health sector should be looked upon as a sustained investment in human and societal development. Despite the great efforts exerted and achievements made, there are great challenges ahead that can be overcome by exhibiting a strong political will and having a united approach of all stakeholders

    Application of Machine Learning Techniques to Predict Teenage Obesity Using Earlier Childhood Measurements from Millennium Cohort Study

    Get PDF
    Obesity is a major global concern with more than 2.1 billion people overweight or obese worldwide, which amounts to almost 30% of the global population. If the current trend continues, the overweight and obese population is likely to increase to 41% by 2030. Individuals developing signs of weight gain or obesity are also at the risk of developing serious illnesses such as type 2 diabetes, respiratory problems, heart disease, stroke, and even death. It is essential to detect childhood obesity as early as possible since children who are either overweight or obese in their younger age tend to stay obese in their adult lives. This research utilises the vast amount of data available via UK's millennium cohort study to construct machine learning driven framework to predict young people at the risk of becoming overweight or obese. The focus of this paper is to develop a framework to predict childhood obesity using earlier childhood data and other relevant features. The use of novel data balancing technique and inclusion of additional relevant features resulted in sensitivity, specificity, and F1-score of 77.32%, 76.81%, and 77.02% respectively. The proposed technique utilises easily obtainable features making it suitable to be used in a clinical and non-clinical environment

    Integrating the HFACS Framework and Fuzzy Cognitive Mapping for In-Flight Startle Causality Analysis

    Get PDF
    This paper discusses the challenge of modeling in-flight startle causality as a precursor to enabling the development of suitable mitigating flight training paradigms. The article presents an overview of aviation human factors and their depiction in fuzzy cognitive maps (FCMs), based on the Human Factors Analysis and Classification System (HFACS) framework. The approach exemplifies system modeling with agents (causal factors), which showcase the problem space's characteristics as fuzzy cognitive map elements (concepts). The FCM prototype enables four essential functions: explanatory, predictive, reflective, and strategic. This utility of fuzzy cognitive maps is due to their flexibility, objective representation, and effectiveness at capturing a broad understanding of a highly dynamic construct. Such dynamism is true of in-flight startle causality. On the other hand, FCMs can help to highlight potential distortions and limitations of use case representation to enhance future flight training paradigms
    • …
    corecore