386 research outputs found

    A Microscopic Mechanism for Muscle's Motion

    Full text link
    The SIRM (Stochastic Inclined Rods Model) proposed by H. Matsuura and M. Nakano can explain the muscle's motion perfectly, but the intermolecular potential between myosin head and G-actin is too simple and only repulsive potential is considered. In this paper we study the SIRM with different complex potential and discuss the effect of the spring on the system. The calculation results show that the spring, the effective radius of the G-actin and the intermolecular potential play key roles in the motion. The sliding speed is about 4.7×106m/s4.7\times10^{-6}m/s calculated from the model which well agrees with the experimental data.Comment: 9 pages, 6 figure

    Density Functional Theory Approach to Noncovalent Interactions via Interacting Monomer Densities

    Full text link
    A recently proposed "DFT+dispersion" treatment (Rajchel et al., Phys. Rev. Lett., 2010, 104, 163001) is described in detail and illustrated by more examples. The formalism derives the dispersion-free density functional theory (DFT) interaction energy and combines it with the dispersion energy from separate DFT calculations. It consists in the self-consistent polarization of DFT monomers restrained by the exclusion principle via the Pauli blockade technique. Within the monomers a complete exchange-correlation potential should be used, but between them only the exact exchange operates. The applications to wide range of molecular complexes from rare-gas dimers to H-bonds to pi-electron interactions show good agreement with benchmark values.Comment: 9 pages, 5 figures, 2 tables, REVTeX

    Ab-Initio Calculation of Molecular Aggregation Effects: a Coumarin-343 Case Study

    Get PDF
    We present time-dependent density functional theory (TDDFT) calculations for single and dimerized Coumarin-343 molecules in order to investigate the quantum mechanical effects of chromophore aggregation in extended systems designed to function as a new generation of sensors and light-harvesting devices. Using the single-chromophore results, we describe the construction of effective Hamiltonians to predict the excitonic properties of aggregate systems. We compare the electronic coupling properties predicted by such effective Hamiltonians to those obtained from TDDFT calculations of dimers, and to the coupling predicted by the transition density cube (TDC) method. We determine the accuracy of the dipole-dipole approximation and TDC with respect to the separation distance and orientation of the dimers. In particular, we investigate the effects of including Coulomb coupling terms ignored in the typical tight-binding effective Hamiltonian. We also examine effects of orbital relaxation which cannot be captured by either of these models

    Tetrahedrally bonded ternary amorphous semiconductor alloys

    Get PDF
    The properties of tetrahedrally bonded ternary amorphous semiconductors a-CSiSn:H and a-CSiGe:H are reviewed with particular emphasis on the temperature dependence of dark conductivity and the coordination in random networks. It is shown here that the dark conductivity as a function of the temperature strongly depends on the carbon content and, more precisely, on the proportion of sp3 and sp2 sites in the carbon. Ternary alloys with different carbon contents are compared to binary alloys using the average coordination number. The ternary alloys have an average coordination number close to the optimal value predicted for amorphous covalent networks

    Observation of B0->pi0pi0

    Full text link
    We report the first observation of the decay B0->pi0pi0, using a 253/fb data sample collected at the Upsilon(4S) resonance with the Belle detector at the KEKB e+e- collider. The measured branching fraction is BF(B0->pi0pi0) = {2.32 +0.4-0.5(stat) +0.2-0.3(syst)} x 10^-6, with a significance of 5.8 standard deviations including systematic uncertainties. We also make the first measurement of the direct CP violating asymmetry in this mode.Comment: 6 pages, 2 figures, submitted to ICHEP04, Beijing and Physical Review Letters. v2: a possible pile-up background is checked and a systematic error for it is include

    An Upper Bound on the Decay tau -> mu gamma from Belle

    Full text link
    We have performed a search for the lepton-flavor-violating decay tau -> mu gamma using a data sample of 86.3fb^{-1} accumulated by the Belle detector at KEK. No evidence for a signal is seen, and we set an upper limit for the branching fraction of B(tau -> mu gamma) < 3.1 x 10^{-7} at the 90% confidence level.Comment: 6 pages, 4 figuresm, submitted to Phys. Rev. Let

    Evidence for CP-Violating Asymmetries in B0->pi+pi- Decays and Constraints on the CKM Angle phi2

    Full text link
    We present an improved measurement of CP-violating asymmetries in B0 -> pi+ pi- decays based on a 78 fb^-1 data sample collected at the Y(4S) resonance with the Belle detector at the KEKB asymmetric-energy e+e- collider. We reconstruct one neutral B meson as a B0 -> pi+ pi- CP eigenstate and identify the flavor of the accompanying B meson from inclusive properties of its decay products. We apply an unbinned maximum likelihood fit to the distribution of the time intervals between the two B meson decay points. The fit yields the CP-violating asymmetry amplitudes Apipi = +0.77+/-0.27(stat)+/-0.08(syst) and Spipi = -1.23+/-0.41(stat)+0.08/-0.07(syst), where the statistical uncertainties are determined from Monte Carlo pseudo-experiments. We obtain confidence intervals for CP-violating asymmetry parameters Apipi and Spipi based on a frequentist approach. We rule out the CP-conserving case, Apipi=Spipi=0, at the 99.93% confidence level. We discuss how these results constrain the value of the CKM angle phi2.Comment: 26 pages, 13 figures, submitted to Phys. Rev.

    Evidence for B0->pi0pi0

    Full text link
    We report evidence for the decay B0->pi0pi0. The analysis is based on a data sample of 152million BBbar pairs collected at the Upsilon(4s) resonance with the Belle detector at the KEKB e+e- storage ring. We find 25.6+9.3/-8.4(stat)+1.6/-1.4(syst) B0->pi0pi0 signal events with a significance of 3.4 standard deviations. We measure the branching fraction to be (1.7+-0.6(stat)+-0.2(syst))*10^{-6}.Comment: Submitted to PR

    Observation of a narrow charmonium-like state in exclusive B+ -> K+ pi+pi- J/psi decays

    Full text link
    We report the observation of a narrow charmonium-like state produced in the exclusive decay process B+ -> K+ pi+pi- J/psi. This state, which decays into pi+pi- J/psi, has a mass of 3872.0+-0.6(stat)+-0.5(syst) MeV, a value that is very near the M_D + M_D* mass threshold. The results are based on an analysis of 152M B-Bbar events collected at the Upsilon(4S) resonance in the Belle detector at the KEKB collider. The statistical significance of the signal is in excess of 10 sigma.Comment: 10 pages 4 figures, submitted to Physical Review Letter

    Belle II Technical Design Report

    Full text link
    The Belle detector at the KEKB electron-positron collider has collected almost 1 billion Y(4S) events in its decade of operation. Super-KEKB, an upgrade of KEKB is under construction, to increase the luminosity by two orders of magnitude during a three-year shutdown, with an ultimate goal of 8E35 /cm^2 /s luminosity. To exploit the increased luminosity, an upgrade of the Belle detector has been proposed. A new international collaboration Belle-II, is being formed. The Technical Design Report presents physics motivation, basic methods of the accelerator upgrade, as well as key improvements of the detector.Comment: Edited by: Z. Dole\v{z}al and S. Un
    corecore