62 research outputs found

    Investigação sorológica da influenza tipos A e B em estudantes universitários, Brasil

    Get PDF
    Levantamento sorológico realizado em 200 estudantes da Universidade de São Paulo, nos anos de 1984 e 1985, demonstrou ampla prevalência sorológica do vírus da influenza tipos A e B. Os anticorpos dos indivíduos foram detectados pela técnica de Hemólise Radial Simples (HRS), cujas médias aritméticas de títulos foram maiores entre as cepas dos subtipos (H1N1) e (H3N2) do vírus da influenza tipo A, mais recentemente isoladas da população. Porém, com relação ao tipo B, deste vírus, a situação foi inversa, pois apesar da cepa B/Engl./ 847/73 ser a mais antiga incidente, revelou melhor reatogenicidade sobre as demais cepas avaliadas e de acordo com a doutrina do "Pecado original antigênico", é suposto que tenha sido responsável pela primo infecção na maioria do grupo investigado. A avaliação sorológica dos subtipos do vírus influenza tipos A e B, desta população, revelou índices de anticorpos de baixos títulos HRS (2,5 a 3,5 mm) e de altos títulos (>; 4,0 mm) que estão relacionadas ao menor e maior nível de proteção à infecção. Sendo que a capacidade individual da imunidade e da persistência de anticorpos contra o vírus, dependeram da atualidade e freqüência de exposição à influenza.Wide serological prevalence of influenza A and B was verified by the serological survey covering 200 students of the University of S. Paulo during the 1984-1985 period. The humoral antibodies were detected by the single radial haemolysis technique, whose arithmetic titres averages were greater for both subtypes, (H1N1) and (H3N2) of the influenza A virus strains recently isolated from the population. However, the situation of this type B virus was not the same as that of type A seeing that the B/Engl/ 847/73, although an older strain, showed better reactogenicity than the other strains evaluated. It is possible that is was responsible for the primo infection of most of the components of the group surveyed, as the phenomenon of the "Original Antigenic Sin" explains. The antibody responses to subtypes of influenza A and B in this survey demonstrated levels with low SRH titres (2.5 to 3.5 mm) and high SRH titres (>; 4.0mm) related to the lowest and highest levels of suggest protection against infection. Individual immunity and persistence of antibody are related to frequency and recent occurrence of exposition to influenza. As concerns the formulation of influenza vaccine it was established that this preserves the antigen selection of the new strains isolated from the population, mainly due to the behavior of the influenza A virus

    Sustainable lysis of Bacillus subtilis biomass to recover the biopharmaceutical L-asparaginase

    Get PDF
    The first-line biopharmaceutical used to treat Acute lymphoblastic leukemia (ALL), Oncaspar, is based on the enzyme L-asparaginase (ASNase), and has annual sales of ca. USD $100 million. In addition to other sources, genetically modified Bacillus subtilis is regarded as one of the most promising hosts for the ASNase production. The Aliivibrio fischeri ASNase type II, which has anti-tumour activity due its higher specific affinity for L-asparagine, expressed in B. subtillis is located in the periplasm. Therefore, cell lysis is required for the ASNase recovery. Nevertheless, typical cell lysis approaches, e.g. chemical methods with surfactants lead to some biocompatibility concerns and the need of extra purification steps. To overcome this drawback, in this work, ultrasound sonication (USS) conditions were studied to develop a greener and more biocompatible method for ASNase recovery from B. subtilis cell lysis. The USS cell lysis was optimized regarding the amplitude of USS pulse, number of lysis cycles and mass of cells/volume of solvent ratio. The identification and quantification of ASNase and major impurities present in the cell extract after lysis were investigated by sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion high-performance liquid chromatography (SE-HPLC). ASNase activity was determined by monitoring the hydrolysis of the substrate, L-asparagine. The results obtained show that the ideal conditions for B. subtilis cell lysis are an amplitude of USS pulse of 60%, 40 cycles of lysis and 10 mL of phosphatebuffered saline (PBS) per 1 g of cells. Overall, an optimized sustainable B. subtilis cell lysis method was developed, avoiding the use of surfactants and with low energy consumption.publishe

    Supported ionic liquid materials for L-asparaginase bioconjugation

    Get PDF
    Since the average life expectancy is increasing, several fatal diseases usually related to aging, such as cancer, heart and neurological diseases have become predominant. Biopharmaceuticals, namely nucleic-acid-based products, antibodies, recombinant proteins and enzymes are fundamental to overcome these age-related diseases. Actually, the gold standard enzyme for the treatment of acute chronic lymphoblastic leukemia (ALL) is L-asparaginase (ASNase). Hence, the reusability of this high-priced drug enables the cost reduction of treatments, which allows its routinely use by a widespread population. In this work, functionalized nanomaterials, namely supported ionic liquid materials (SILs) based on silica, formerly described in the literature for the separation of natural compounds from vegetable biomass, were studied as a cost effective support for ASNase immobilization and reuse. Commercial ASNase was used for preliminary tests. Several experimental immobilization conditions, such as pH, contact time, ASNase concentration and SILs recyclability were assessed and optimized, regarding the immobilized ASNase activity, assessed by Nessler reaction, which quantifies the amount of ammonium released after the enzymatic reaction with L-asparagine and immobilization yield. In fact, ASNase immobilization onto the SILs was successfully achieved with an immobilized ASNase activity ranging from 0.6 to 0.9 U of enzyme per mg of SILs under the optimum immobilization conditions. Moreover, all SILs allowed 5 cycles of reaction, while keeping more than 75% of initial ASNase activity. Through the envisioned immobilization strategy, process costs will be considerably reduced, which can lead to a wider use of ASNase in diverse fields of application.publishe

    Chromium (VI) ion adsorption features of chitosan film and its chitosan/zeolite conjugate 13X film

    Get PDF
    This research evaluated the importance of the adsorption properties of chitosan a chitosan/zeolite conjugate film for the removal of Cr(VI) ions from solutions in the 5–260 mg/L concentration range, when the pH was adjusted to 4.0 and 6.0. The uptake capacities of the films formed by chitosan and by the chitosan/zeolite conjugate were calculated by mass balance. The equilibrium isotherms were fitted to the Langmuir, Freundlich and Redlich-Peterson models. The chitosan film seems to be a good sorbent for Cr(VI) at pH 4, but its physical instability suggests the need for a more resilient support. Due to this fact zeolite was added to the chitosan matrix in solution and a chitosan/zeolite (CS/Zeo) film was thus formed. The solubility of the film and the characterization of the different matrices by FTIR, TGA and X-Ray showed that a cross-linked structure was formed between the chitosan and zeolite and the solubility of the film increased. In this study, the low manufacturing cost of the CS/Zeo matrix, the good uptake of Cr(VI) at acidic pH (17.28 mg/g) and the non desorption of Cr(VI) from the film in water suggests this combination should be tested in industrial environment.The authors are grateful for the Coordination of Improvement of Higher Education Personnel (CAPES - Brazil) for PhD fellowship and the financial support received from Financier of Studies and Projects (FINEP - Brazil), National Council for Scientific and Technological Development (CNPq - Brazil), Catholic University of Pernambuco (UNICAP - Brazil), University of Minho (UMINHO - Portugal). They also acknowledge Antonio Soares Vicente (UMINHO - Portugal) who kindly supplied the chitosan

    Reusability of L-asparaginase immobilized on silica-based supported ionic liquids

    Get PDF
    L-asparaginase (ASNase) is an aminohydrolase enzyme used as an anticancer drug, e.g. in the treatment of acute lymphoblastic leukemia, in acrylamide reduction and in biosensing. Nevertheless, its low stability and thermolability, and susceptibility to proteases, hinder its application in the health and food industries. Hence, the improvement of its properties through efficient immobilization methods is in high demand. Thus, this work aims the development of silica-based supported ionic liquids (SILs) for the ASNase immobilization to improve its stability and enable its reusability. While activated silica with no ILs only kept total initial ASNase activity during the first cycle of reaction, SILs allowed 5 cycles of reaction, keeping 82% of initial ASNase activity, reinforcing their potential as alternative enzymatic supports.publishe

    Carbon nanomaterials for the purification of antileukemic drugs

    Get PDF
    Getting older is the biggest risk factor for most fatal diseases, including cancer, heart disease and Alzheimer. To overcome such age-related society diseases, it is crucial to optimize the production and purification of biopharmaceuticals, such as nucleic acid-based products, antibodies and recombinant proteins and enzymes. Low cost production combined with high purity levels allow their routinely use by a widespread population. Continuous progresses have been made for the development of recombinant therapeutic enzymes. L-asparaginase (LA) is an antileukemic biopharmaceutical enzyme of current high-cost. LA is produced via fermentation and its purification usually comprises several steps that account up to 80% of its total production cost (1). This work aims to develop sustainable technologies to extract and purify LA. Reusable functionalized nanomaterials, namely carbon nanomaterials (CNTs), are used as cost-effective purification techniques for the target enzyme. Initially, the synthesis and modification of CNTs was performed. Different CNTs were obtained and used for the purification of LA. Commercial LA was used for the first purification tests, in order to understand the behaviour of the enzyme in contact with the nanomaterial. Experimental conditions, such as pH, and material/LA ratio, contact time were optimized. LA activity was quantified by Nessler reaction (2). The first results reveal a total adsorption of LA by the CNTs. Depending on the CNT functionalization/ treatment, different values of recovered activity of LA were obtained. The modified CNTs are shown to be very promising nanomaterials for the purification of LA. The LA was easily attached to CNTs by adsorption under mild conditions. CNTs supports can be a real alternative for a single step immobilization/purification of LA.publishe

    Purification of antileukemic drugs through silica-based supported ionic liquids

    Get PDF
    L-asparaginase (LA) is an enzyme used as a biopharmaceutical for the treatment of acute lymphoblastic leukemia. LA can be produced via fermentation and its purification usually comprises several steps including precipitation, liquid-liquid extraction and chromatography techniques. Among these, ion exchange chromatography, which is often preceded by precipitation with salts as a first pre-chromatographic step, is the most used. However, theses common strategies for protein purification result in low yields and purity, requiring long processing times, while leading to a consequent increase of the process costs. Therefore, the demand for new cost-effective production/purification processes play now a priority role. This work aims the development of cost-effective technologies to purify LA from the complex fermentation medium from Bacillus Subtillis. Silica-based supported ionic liquids (SILs) are investigated as cost-effective purification materials for the target enzyme. The concentration of the extract from the fermentation, material/ extract from fermentation ratio and contact time effects in the purity and yield of LA were optimized. With this strategy, process costs, energy consumed, and waste generated, may be significantly decreased, which may lead to this biopharmaceutical price decrease and wider application.publishe

    Purification of antileukemic drugs through silica-based supported ionic liquids

    Get PDF
    L-asparaginase (LA) is an enzyme used as a biopharmaceutical for the treatment of acute lymphoblastic leukemia. LA can be produced via fermentation and its purification usually comprises ion exchange chromatography, which is often preceded by precipitation with salts as a first pre-chromatographic step. However, this purification strategy result in low yields and purity, requires long processing times, while leading to a consequent increase of the process costs. Therefore, the demand for new cost-effective purification processes play now a priority role. In this work silica-based supported ionic liquids (SILs) are investigated as an alternative technology to purify LA from the complex fermentation medium from Bacillus subtillis. The concentration of the extract from the fermentation, material/ extract from fermentation ratio and contact time effects in the purity and yield of LA were optimized. With this strategy, process costs, energy consumed, and waste generated, may be significantly decreased, which may lead to this biopharmaceutical price decrease and wider application.publishe

    Enhanced enzyme reuse through the bioconjugation of L-asparaginase and silica-based supported ionic liquid-like phase materials

    Get PDF
    L-asparaginase (ASNase) is an amidohydrolase that can be used as a biopharmaceutical, as an agent for acrylamide reduction, and as an active molecule for L-asparagine detection. However, its free form displays some limitations, such as the enzyme’s single use and low stability. Hence, immobilization is one of the most effective tools for enzyme recovery and reuse. Silica is a promising material due to its low-cost, biological compatibility, and tunable physicochemical characteristics if properly functionalized. Ionic liquids (ILs) are designer compounds that allow the tailoring of their physicochemical properties for a given task. If properly designed, bioconjugates combine the features of the selected ILs with those of the support used, enabling the simple recovery and reuse of the enzyme. In this work, silica-based supported ionic liquid-like phase (SSILLP) materials with quaternary ammoniums and chloride as the counterion were studied as novel supports for ASNase immobilization since it has been reported that ammonium ILs have beneficial effects on enzyme stability. SSILLP materials were characterized by elemental analysis and zeta potential. The immobilization process was studied and the pH effect, enzyme/support ratio, and contact time were optimized regarding the ASNase enzymatic activity. ASNase–SSILLP bioconjugates were characterized by ATR-FTIR. The bioconjugates displayed promising potential since [Si][N3444]Cl, [Si][N3666]Cl, and [Si][N3888]Cl recovered more than 92% of the initial ASNase activity under the optimized immobilization conditions (pH 8, 6 × 10−3 mg of ASNase per mg of SSILLP material, and 60 min). The ASNase–SSILLP bioconjugates showed more enhanced enzyme reuse than reported for other materials and immobilization methods, allowing five cycles of reaction while keeping more than 75% of the initial immobilized ASNase activity. According to molecular docking studies, the main interactions established between ASNase and SSILLP materials correspond to hydrophobic interactions. Overall, it is here demonstrated that SSILLP materials are efficient supports for ASNase, paving the way for their use in the pharmaceutical and food industries.publishe
    corecore