23 research outputs found

    Impact of dietary starch on extrahepatic tissue lipid metabolism in farmed European (Dicentrarchus labrax) and Asian seabass (Lates calcarifer)

    Get PDF
    In aquaculture, there is high interest in substituting marine-derived with vegetable-based ingredients as energy source. Farmed carnivorous fish under high carbohydrate diets tend to increase adiposity but it remains unclear if this happens by increased lipid retention/accumulation, promotion of lipogenic pathways, or both. In order to determine the response of extrahepatic tissue to dietary starch, European (Dicentrarchus labrax) and Asian (Lates calcarifer) seabass were fed a control (low starch; LS) or experimental (high starch; HS) diet, for at least 21 days and then transferred for 6 days to saltwater enriched with deuterated water 2H2O. Incorporation of 2H-labelling follows well-defined metabolic steps, and analysis of triacylglycerols (TAG) 2H-enrichment by 2HNMR allowed evaluation of de novo lipogenesis (DNL) in muscle and visceral adipose tissue (VAT). Fractional synthetic rates for TAG-bound fatty acids and glycerol were quantified separately providing a detailed lipogenic profile. The FA profile differed substantially between muscle and VAT in both species, but their lipogenic fluxes revealed even greater differences. In European seabass, HS promoted DNL of TAG-bound FA, in muscle and VAT. High 2H-enrichment also found in muscle TAG-bound glycerol was indicative of its role on lipid cycling. In Asian seabass, HS had no effect on muscle FA composition and lipogenic flux, with no 2H-enriched TAG being detected. VAT on the other hand revealed a strong enhancement of DNL in HS-fed fish along with high TAG-bound glycerol cycling. This study consolidated the use of 2H2O as tracer for fish lipid metabolism in different tissues, under different dietary conditions and suitable to use in different fish models

    Limitations to Starch Utilization in Barramundi (Lates calcarifer) as Revealed by NMR-Based Metabolomics

    Get PDF
    Practical diets for commercial barramundi production rarely contain greater than 10% starch, used mainly as a binding agent during extrusion. Alternative ingredients such as digestible starch have shown some capacity to spare dietary protein catabolism to generate glucose. In the present study, a carnivorous fish species, the Asian seabass (Lates calcarifer) was subjected to two diets with the same digestible energy: Protein (P) – with high protein content (no digestible starch); and Starch (S) – with high digestible (pregelatinized) starch content. The effects of a high starch content diet on hepatic glycogen synthesis as well as the muscle and liver metabolome were studied using a complementary approach of 1H and 2H NMR. The hepatosomatic index was lower for fish fed high starch content diet while the concentration of hepatic glycogen was similar between groups. However, increased glycogen synthesis via the direct pathway was observed in the fish fed high starch content diet which is indicative of increased carbohydrate utilization. Multivariate analysis also showed differences between groups in the metabolome of both tissues. Univariate analysis revealed more variations in liver than in muscle of fish fed high starch content diet. Variations in metabolome were generally in agreement with the increase in the glycogen synthesis through direct pathway, however, this metabolic shift seemed to be insufficient to keep the growth rate as ensured by the diet with high protein content. Although liver glycogen does not make up a substantial quantity of total stored dietary energy in carnivorous fish, it is a key regulatory intermediate in dietary energy utilization

    Dietary starch promotes hepatic lipogenesis in barramundi (Lates calcarifer)

    Get PDF
    Barramundi (Lates calcarifer) are a highly valued aquaculture species, and, as obligate carnivores, they have a demonstrated preference for dietary protein over lipid or starch to fuel energetic growth demands. In order to investigate how carnivorous fish regulate nutritional cues, we examined the metabolic effects of feeding two isoenergetic diets that contained different proportions of digestible protein or starch energy. Fish fed a high proportion of dietary starch energy had a higher proportion of liver SFA, but showed no change in plasma glucose levels, and few changes in the expression of genes regulating key hepatic metabolic pathways. Decreased activation of the mammalian target of rapamycin growth signalling cascade was consistent with decreased growth performance values. The fractional synthetic rate (lipogenesis), measured by TAG 2H-enrichment using 2H NMR, was significantly higher in barramundi fed with the starch diet compared with the protein diet (0·6 (se 0·1) v. 0·4 (se 0·1) % per d, respectively). Hepatic TAG-bound glycerol synthetic rates were much higher than other closely related fish such as sea bass, but were not significantly different (starch, 2·8 (se 0·3) v. protein, 3·4 (se 0·3) % per d), highlighting the role of glycerol as a metabolic intermediary and high TAG-FA cycling in barramundi. Overall, dietary starch significantly increased hepatic TAG through increased lipogenesis. Compared with other fish, barramundi possess a unique mechanism to metabolise dietary carbohydrates and this knowledge may define ways to improve performance of advanced formulated feeds

    Digesta and Plasma Metabolomics of Rainbow Trout Strains with Varied Tolerance of Plant-Based Diets Highlights Potential for Non-Lethal Assessments of Enteritis Development

    No full text
    The replacement of fishmeal in aquafeeds is essential to the sustainability of aquaculture. Besides the procurement of alternative protein sources, fish can also be selected for better performance on plant-based alternative diets. Rainbow trout (Oncorhynchus mykiss) is one such species in which the strain ARS-Sel has been selected for higher growth and enhanced utilization when fed soy-based diets. The aim of this study was to compare fish growth and plasma and digesta metabolomes between ARS-Sel and two commercial strains (CS-1 and CS-2), when fed plant-protein (PM) and fishmeal-based (FM) diets, and to correlate them with the onset of enteritis. An NMR-metabolomics approach was taken to assess plasma and digesta metabolite profiles. Diet and strain showed significant effects on fish growth, with the ARS-Sel fish receiving the PM diet reaching the highest final weight at sampling. Multivariate analysis revealed differences between plasma and digesta metabolite profiles of ARS-Sel and CS (CS-1 considered together with CS-2) PM-fed groups in the early stages of enteritis development, which was confirmed by intestinal histology. As reported in previous studies, the ARS-Sel strain performed better than the commercial strains when fed the PM diet. Our findings also suggest that metabolomic profiles of plasma and digesta, samples of which can be obtained through non-lethal methods, offer valuable insight in monitoring the occurrence of enteritis in carnivorous aquaculture species due to plant-based diets

    Blood Metabolites and Profiling Stored Adipose Tissue Reveal the Differential Migratory Strategies of Eurasian Reed and Sedge Warblers

    No full text
    The overall speed of bird migration is limited by the amount of fuel stores acquired during the initial phases of migration. The ability to mobilize fat is crucial for migratory birds that can exhibit different migratory strategies. Birds mobilize triglycerides during nocturnal flight thus increasing circulating fatty acids and glycerol to meet the metabolic demands of flight. Eurasian Reed (Acrocephalus scirpaceus) and Sedge (Acrocephalus schoenobaenus) Warblers were captured at Portuguese stopover sites during spring and autumn migration. These species were selected based on their different migration strategies and dietary preferences during migration. Blood metabolites and fat composition were analyzed to determine their nutritional states. Sedge Warblers had higher blood triglyceride and glycerol levels during post-flight fasting than in non-fasting periods. Furthermore, Sedge Warblers had higher triglyceride and glycerol levels than Eurasian Reed Warblers in both post-flight fasting and non-fasting condition. The differences found may reflect distinct approaches in re-feeding activity (e.g., feeding intensely) associated with the number of stopovers during migratory cycle. Dietary preferences affect the fat composition available for oxidation during long-term exercise in migratory flight. Nuclear magnetic resonance analysis of subcutaneous fat composition revealed that Sedge Warblers presented higher levels of polyunsaturated fatty acid levels than Eurasian Reed Warblers. The distinct lipidic profiles observed and differences in feeding ecology may explain the different migration strategies of these species. Overall and despite their ecological similarity, our study species showed pronounced differences in blood metabolites levels and subcutaneous fatty acids composition, likely attributed to the migratory strategy and foraging preferences during their migratory cycle

    Blood Metabolites and Profiling Stored Adipose Tissue Reveal the Differential Migratory Strategies of Eurasian Reed and Sedge Warblers

    No full text
    The overall speed of bird migration is limited by the amount of fuel stores acquired during the initial phases of migration. The ability to mobilize fat is crucial for migratory birds that can exhibit different migratory strategies. Birds mobilize triglycerides during nocturnal flight thus increasing circulating fatty acids and glycerol to meet the metabolic demands of flight. Eurasian Reed (Acrocephalus scirpaceus) and Sedge (Acrocephalus schoenobaenus) Warblers were captured at Portuguese stopover sites during spring and autumn migration. These species were selected based on their different migration strategies and dietary preferences during migration. Blood metabolites and fat composition were analyzed to determine their nutritional states. Sedge Warblers had higher blood triglyceride and glycerol levels during post-flight fasting than in non-fasting periods. Furthermore, Sedge Warblers had higher triglyceride and glycerol levels than Eurasian Reed Warblers in both post-flight fasting and non-fasting condition. The differences found may reflect distinct approaches in re-feeding activity (e.g., feeding intensely) associated with the number of stopovers during migratory cycle. Dietary preferences affect the fat composition available for oxidation during long-term exercise in migratory flight. Nuclear magnetic resonance analysis of subcutaneous fat composition revealed that Sedge Warblers presented higher levels of polyunsaturated fatty acid levels than Eurasian Reed Warblers. The distinct lipidic profiles observed and differences in feeding ecology may explain the different migration strategies of these species. Overall and despite their ecological similarity, our study species showed pronounced differences in blood metabolites levels and subcutaneous fatty acids composition, likely attributed to the migratory strategy and foraging preferences during their migratory cycle

    Effects of moderate global maternal nutrient reduction on fetal baboon renal mitochondrial gene expression at 0.9 gestation

    Get PDF
    Early life malnutrition results in structural alterations in the kidney, predisposing offspring to later life renal dysfunction. Kidneys of adults who were growth restricted at birth have substantial variations in nephron endowment. Animal models have indicated renal structural and functional consequences in offspring exposed to suboptimal intrauterine nutrition. Mitochondrial bioenergetics play a key role in renal energy metabolism, growth, and function. We hypothesized that moderate maternal nutrient reduction (MNR) would adversely impact fetal renal mitochondrial expression in a well-established nonhuman primate model that produces intrauterine growth reduction at term. Female baboons were fed normal chow diet or 70% of control diet (MNR). Fetal kidneys were harvested at cesarean section at 0.9 gestation (165 days gestation). Human Mitochondrial Energy Metabolism and Human Mitochondria Pathway PCR Arrays were used to analyze mitochondrially relevant mRNA expression. In situ protein content was detected by immunohistochemistry. Despite the smaller overall size, the fetal kidney weight-to-body weight ratio was not affected. We demonstrated fetal sex-specific differential mRNA expression encoding mitochondrial metabolite transport and dynamics proteins. MNR-related differential gene expression was more evident in female fetuses, with 16 transcripts significantly altered, including 14 downregulated and 2 upregulated transcripts. MNR impacted 10 transcripts in male fetuses, with 7 downregulated and 3 upregulated transcripts. The alteration in mRNA levels was accompanied by a decrease in mitochondrial protein cytochrome c oxidase subunit VIc. In conclusion, transcripts encoding fetal renal mitochondrial energy metabolism proteins are nutrition sensitive in a sex-dependent manner. We speculate that these differences lead to decreased mitochondrial fitness that contributes to renal dysfunction in later life

    Metabolic Effects of Dietary Glycerol Supplementation in Muscle and Liver of European Seabass and Rainbow Trout by 1H NMR Metabolomics

    No full text
    The sustainable growth of fish aquaculture will require the procurement of non-marine feed sources. Glycerol is a potential feed supplement whose metabolism may spare the catabolism of dietary amino acids, thereby extending the use of the feed protein to other physiological functions such as growth. In the present study, the effects of dietary glycerol supplementation on the muscle and liver metabolomes of rainbow trout (Oncorhynchus mykiss) and European seabass (Dicentrarchus labrax) were evaluated. Fish juveniles were fed diets with 0%, 2.5%, and 5% glycerol. Muscle and liver aqueous fractions were extracted and 1H NMR spectra were acquired. Metabolite profiles derived from the 1H NMR signals were assessed using univariate and multivariate statistical analyses. The adenylate energy charge was determined in the muscle. For both species, the muscle metabolite profile showed more variability compared to that of the liver and was most perturbed by the 5.0% glycerol diet. For the liver metabolite profile, rainbow trout showed fewer differences compared to European seabass. No differences were observed in energy charge between experimental groups for either species. Thus, rainbow trout appeared to be less susceptible to tissue metabolite perturbations, compared to seabass, when the diet was supplemented with up to 5% glycerol

    Metabolic Effects of Dietary Glycerol Supplementation in Muscle and Liver of European Seabass and Rainbow Trout by 1H NMR Metabolomics

    No full text
    The sustainable growth of fish aquaculture will require the procurement of non-marine feed sources. Glycerol is a potential feed supplement whose metabolism may spare the catabolism of dietary amino acids, thereby extending the use of the feed protein to other physiological functions such as growth. In the present study, the effects of dietary glycerol supplementation on the muscle and liver metabolomes of rainbow trout (Oncorhynchus mykiss) and European seabass (Dicentrarchus labrax) were evaluated. Fish juveniles were fed diets with 0%, 2.5%, and 5% glycerol. Muscle and liver aqueous fractions were extracted and 1H NMR spectra were acquired. Metabolite profiles derived from the 1H NMR signals were assessed using univariate and multivariate statistical analyses. The adenylate energy charge was determined in the muscle. For both species, the muscle metabolite profile showed more variability compared to that of the liver and was most perturbed by the 5.0% glycerol diet. For the liver metabolite profile, rainbow trout showed fewer differences compared to European seabass. No differences were observed in energy charge between experimental groups for either species. Thus, rainbow trout appeared to be less susceptible to tissue metabolite perturbations, compared to seabass, when the diet was supplemented with up to 5% glycerol
    corecore