728 research outputs found

    Loop quantum effect and the fate of tachyon field collapse

    Get PDF
    We study the fate of gravitational collapse of a tachyon field matter. In presence of an inverse square potential a black hole forms. Loop quantum corrections lead to the avoidance of classical singularities, which is followed by an outward flux of energy.Comment: Contribution to the conference of Loops'11, Madri

    Cost-Effective Double-Layer Hydrogel Composites for Wound Dressing Applications.

    Full text link
    Although poly vinyl alcohol-poly acrylic acid (PVA-PAA) composites have been widely used for biomedical applications, their incorporation into double-layer assembled thin films has been limited because the interfacial binding materials negatively influence the water uptake capacity of PVA. To minimize the effect of interfacial binding, a simple method for the fabrication of a double-layered PVA-PAA hydrogel was introduced, and its biomedical properties were evaluated in this study. Our results revealed that the addition of PAA layers on the surface of PVA significantly increased the swelling properties. Compared to PVA, the equilibrium swelling ratio of the PVA-PAA hydrogel increased (p = 0.035) and its water vapour permeability significantly decreased (p = 0.04). Statistical analysis revealed that an increase in pH value from 7 to 10 as well as the addition of PAA at pH = 7 significantly increased the adhesion force (p < 0.04). The mechanical properties-including ultimate tensile strength, modulus, and elongation at break-remained approximately untouched compared to PVA. A significant increase in biocompatibility was found after day 7 (p = 0.016). A higher release rate for tetracycline was found at pH = 8 compared to neutral pH

    Tuning Surface Morphology of Fluorescent Hydrogels Using a Vortex Fluidic Device.

    Full text link
    In recent decades, microfluidic techniques have been extensively used to advance hydrogel design and control the architectural features on the micro- and nanoscale. The major challenges with the microfluidic approach are clogging and limited architectural features: notably, the creation of the sphere, core-shell, and fibers. Implementation of batch production is almost impossible with the relatively lengthy time of production, which is another disadvantage. This minireview aims to introduce a new microfluidic platform, a vortex fluidic device (VFD), for one-step fabrication of hydrogels with different architectural features and properties. The application of a VFD in the fabrication of physically crosslinked hydrogels with different surface morphologies, the creation of fluorescent hydrogels with excellent photostability and fluorescence properties, and tuning of the structure-property relationship in hydrogels are discussed. We conceive, on the basis of this minireview, that future studies will provide new opportunities to develop hydrogel nanocomposites with superior properties for different biomedical and engineering applications

    Vasopressin attenuates ischemia-reperfusion injury via reduction of oxidative stress and inhibition of mitochondrial permeability transition pore opening in rat hearts

    Get PDF
    Aim of this study was to investigate the involvement of the mitochondrial permeability transition pore (MPTP) and oxidative stress in the cardioprotective effect of vasopressin (AVP) on ischemia/reperfusion (I/R) injury. Anesthetized male wistar rats were subjected to regional 30 min ischemia and 120 min reperfusion and randomly divided into nine groups: (1) Control; saline was administered intravenously before ischemia, (2) vasopressin was administrated 10 min prior to ischemia, (3, 4) Atractyloside as MPTP opener, was injected 5 min prior to reperfusion without and with vasopressin, (5, 6) Cyclosporine A as a MPTP closer, was injected 5 min prior to reperfusion without and with vasopressin, (7) mitochondria were isolated from control group and CaCl2 was added as MPTP opener and swelling inducer, (8) isolated mitochondria from Control hearts was incubated with Cyclosporine A before adding the CaCl2 (9) CaCl2 was added to isolated mitochondria from vasopressin group. Infusion of vasopressin decreased infarct size (18.6±1.7% vs. control group 37.6±2.4%), biochemical parameters [LDH (Lactate Dehydrogenase), CK-MB (Creatine Kinase-MB) and MDA (Malondialdehyde) plasma levels, PAB (Prooxidant-antioxidant balance)] compared to control group. Atactyloside suppressed the cardioprotective effect of vasopressin (32.5±1.9% vs. 18.6±1.7%) but administration of the Cyclosporine A without and with vasopressin significantly reduced infarct size to 17.7±4% (P<0.001) and 22.7±3% (P<0.01) respectively, vs. 37.6±2.4% in control group. Also, vasopressin, similar to Cyclosporine A, led to decrease in CaCl2-induced swelling. It seems that vasopressin through antioxidant effect and MPTP inhibition has created a cardioprotection against ischemia/reperfusion injuries. © 2015 Elsevier B.V. All rights reserved

    Novel Bacterial Cellulose-Poly (Acrylic Acid) Hybrid Hydrogels with Controllable Antimicrobial Ability as Dressings for Chronic Wounds.

    Full text link
    This investigation examines the combination of poly (acrylic acid) (PAA) and bacterial cellulose (BC) nanofibers to synthesize hydrogel hybrid composites used for wound dressing application. Amoxicillin (AM) was also grafted onto the composites for drug release. Fourier transform infrared analysis and scanning electron microscopy conducted revealed the structure and porosity of the composite being developed, as well as the successful fabrication of BC-PAA composites. The results of mechanical testing and hygroscopicity revealed that the composite shows higher stability than hydrogels which are currently used worldwide, albeit with a slight reduction in swelling capabilities. However, the composite was revealed to be responsive to a rise in pH values with an increase in composite swelling and drug release. These results together with their morphological characteristics suggest that BC-PAA hydrogel hybrid composite is a promising candidate for wound dressing application

    Novel Bacterial Cellulose/Gelatin Hydrogels as 3D Scaffolds for Tumor Cell Culture.

    Full text link
    Three-dimensional (3D) cells in vitro culture are becoming increasingly popular in cancer research because some important signals are lost when cells are cultured in a two-dimensional (2D) substrate. In this work, bacterial cellulose (BC)/gelatin hydrogels were successfully synthesized and were investigated as scaffolds for cancer cells in vitro culture to simulate tumor microenvironment. Their properties and ability to support normal growth of cancer cells were evaluated. In particular, the human breast cancer cell line (MDA-MD-231) was seeded into BC/gelatin scaffolds to investigate their potential in 3D cell in vitro culture. MTT proliferation assay, scanning electron microscopy, hematoxylin and eosin staining and immunofluorescence were used to determine cell proliferation, morphology, adhesion, infiltration, and receptor expression. The in vitro MDA-MD-231 cell culture results demonstrated that cells cultured on the BC/gelatin scaffolds had significant adhesion, proliferation, ingrowth and differentiation. More importantly, MDA-MD-231 cells cultured in BC/gelatin scaffolds retained triple-negative receptor expression, demonstrating that BC/gelatin scaffolds could be used as ideal in vitro culture scaffolds for tumor cells

    Energy conditions in f(R) gravity and Brans-Dicke theories

    Full text link
    The equivalence between f(R) gravity and scalar-tensor theories is invoked to study the null, strong, weak and dominant energy conditions in Brans-Dicke theory. We consider the validity of the energy conditions in Brans-Dicke theory by invoking the energy conditions derived from a generic f(R) theory. The parameters involved are shown to be consistent with an accelerated expanding universe.Comment: 9 pages, 1 figure, to appear in IJMP

    Understanding and Visualizing Deep Visual Saliency Models

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordRecently, data-driven deep saliency models have achieved high performance and have outperformed classical saliency models, as demonstrated by results on datasets such as the MIT300 and SALICON. Yet, there remains a large gap between the performance of these models and the inter-human baseline. Some outstanding questions include what have these models learned, how and where they fail, and how they can be improved. This article attempts to answer these questions by analyzing the representations learned by individual neurons located at the intermediate layers of deep saliency models. To this end, we follow the steps of existing deep saliency models, that is borrowing a pre-trained model of object recognition to encode the visual features and learning a decoder to infer the saliency. We consider two cases when the encoder is used as a fixed feature extractor and when it is fine-tuned, and compare the inner representations of the network. To study how the learned representations depend on the task, we fine-tune the same network using the same image set but for two different tasks: saliency prediction versus scene classification. Our analyses reveal that: 1) some visual regions (e.g. head, text, symbol, vehicle) are already encoded within various layers of the network pre-trained for object recognition, 2) using modern datasets, we find that fine-tuning pre-trained models for saliency prediction makes them favor some categories (e.g. head) over some others (e.g. text), 3) although deep models of saliency outperform classical models on natural images, the converse is true for synthetic stimuli (e.g. pop-out search arrays), an evidence of significant difference between human and data-driven saliency models, and 4) we confirm that, after-fine tuning, the change in inner-representations is mostly due to the task and not the domain shift in the data.Engineering and Physical Sciences Research Council (EPSRC
    • …
    corecore