53 research outputs found

    Identification and characterization of DUSP27, a novel dual-specific protein phosphatase

    Get PDF
    AbstractA novel human dual-specific protein phosphatase (DSP), designated DUSP27, is here described. The DUSP27 gene contains three exons, rather than the predicted 4–14 exons, and encodes a 220 amino acid protein. DUSP27 is structurally similar to other small DSPs, like VHR and DUSP13. The location of DUSP27 on chromosome 10q22, 50kb upstream of DUSP13, suggests that these two genes arose by gene duplication. DUSP27 is an active enzyme, and its kinetic parameters and were determined. DUSP27 is a cytosolic enzyme, expressed in skeletal muscle, liver and adipose tissue, suggesting its possible role in energy metabolism

    Low-Molecular-Weight Protein Tyrosine Phosphatases of Bacillus subtilis

    Full text link
    In gram-negative organisms, enzymes belonging to the low-molecular-weight protein tyrosine phosphatase (LMPTP) family are involved in the regulation of important physiological functions, including stress resistance and synthesis of the polysaccharide capsule. LMPTPs have been identified also in gram-positive bacteria, but their functions in these organisms are presently unknown. We cloned two putative LMPTPs from Bacillus subtilis, YfkJ and YwlE, which are highly similar to each other in primary structure as well as to LMPTPs from gram-negative bacteria. When purified from overexpressing Escherichia coli strains, both enzymes were able to dephosphorylate p-nitrophenyl-phosphate and phosphotyrosine-containing substrates in vitro but showed significant differences in kinetic parameters and sensitivity to inhibitors. Transcriptional analyses showed that yfkJ was transcribed at a low level throughout the growth cycle and underwent a σB-dependent transcriptional upregulation in response to ethanol stress. The transcription of ywlE was growth dependent but stress insensitive. Genomic deletion of each phosphatase-encoding gene led to a phenotype of reduced bacterial resistance to ethanol stress, which was more marked in the ywlE deletion strain. Our study suggests that YfkJ and YwlE play roles in B. subtilis stress resistance

    Cervix carcinoma is associated with an up-regulation and nuclear localization of the dual-specificity protein phosphatase VHR

    Get PDF
    BACKGROUND: The 21-kDa Vaccinia virus VH1-related (VHR) dual-specific protein phosphatase (encoded by the DUSP3 gene) plays a critical role in cell cycle progression and is itself regulated during the cell cycle. We have previously demonstrated using RNA interference that cells lacking VHR arrest in the G1 and G2 phases of the cell cycle and show signs of beginning of cell senescence. METHODS: In this report, we evaluated successfully the expression levels of VHR protein in 62 hysterectomy or conization specimens showing the various (pre) neoplastic cervical epithelial lesions and 35 additional cases of hysterectomy performed for non-cervical pathologies, from patients under 50 years of age. We used a tissue microarray and IHC technique to evaluate the expression of the VHR phosphatase. Immunofluorescence staining under confocal microscopy, Western blotting and RT-PCR methods were used to investigate the localization and expression levels of VHR. RESULTS: We report that VHR is upregulated in (pre) neoplastic lesions (squamous intraepithelial lesions; SILs) of the uterine cervix mainly in high grade SIL (H-SIL) compared to normal exocervix. In the invasive cancer, VHR is also highly expressed with nuclear localization in the majority of cells compared to normal tissue where VHR is always in the cytoplasm. We also report that this phosphatase is highly expressed in several cervix cancer cell lines such as HeLa, SiHa, CaSki, C33 and HT3 compared to primary keratinocytes. The immunofluorescence technique under confocal microscopy shows that VHR has a cytoplasmic localization in primary keratinocytes, while it localizes in both cytoplasm and nucleus of the cancer cell lines investigated. We report that the up-regulation of this phosphatase is mainly due to its post-translational stabilization in the cancer cell lines compared to primary keratinocytes rather than increases in the transcription of DUSP3 locus. CONCLUSION: These results together suggest that VHR can be considered as a new marker for cancer progression in cervix carcinoma and potential new target for anticancer therapy

    A Conserved Mechanism for Control of Human and Mouse Embryonic Stem Cell Pluripotency and Differentiation by Shp2 Tyrosine Phosphatase

    Get PDF
    Recent studies have suggested distinctive biological properties and signaling mechanisms between human and mouse embryonic stem cells (hESCs and mESCs). Herein we report that Shp2, a protein tyrosine phosphatase with two SH2 domains, has a conserved role in orchestration of intracellular signaling cascades resulting in initiation of differentiation in both hESCs and mESCs. Homozygous deletion of Shp2 in mESCs inhibited differentiation into all three germ layers, and siRNA-mediated knockdown of Shp2 expression in hESCs led to a similar phenotype of impaired differentiation. A small molecule inhibitor of Shp2 enzyme suppressed both hESC and mESC differentiation capacity. Shp2 modulates Erk, Stat3 and Smad pathways in ES cells and, in particular, Shp2 regulates BMP4-Smad pathway bi-directionally in mESCs and hESCs. These results reveal a common signaling mechanism shared by human and mouse ESCs via Shp2 modulation of overlapping and divergent pathways

    PTP1B: a new therapeutic target for Rett syndrome

    No full text

    Evaluating Effects of Tyrosine Phosphatase Inhibitors on T Cell Receptor Signaling

    Full text link
    peer reviewedThe importance of tyrosine phosphorylation in normal cell physiology is well established, highlighted by the many human diseases that stem from abnormalities in protein tyrosine kinase (PTK) and protein tyrosine phosphatase (PTP) function. Contrary to earlier assumptions, it is now clear that both PTKs and PTPs are highly specific, non-redundant, and tightly regulated enzymes. Hematopoietic cells express particularly high numbers of PTKs and PTPs, and aberrant function of these proteins have been linked to many hematopoietic disorders. While PTK inhibitors are among FDA approved drugs for the treatment of leukemia and other cancers, efforts to develop therapeutics that target specific PTPs are still in its infancy. Here, we describe methods on how to evaluate effects of PTP inhibitors on T cell receptor signaling. Moreover, we provide a comprehensive strategy for compound prioritization, applicable to any drug discovery project involving T cells. We present a testing funnel that starts with relatively high-throughput luciferase reporter assays, followed by immunoblot, calcium flux, flow cytometry, and proliferation assays, continues with cytokine bead arrays, and finishes with specificity assays that involve RNA interference. We provide protocols for experiments in the Jurkat T cell line, but more importantly give detailed instructions, paired with numerous tips, on how to prepare and work with primary human T cells

    Acta paediatrica

    Get PDF
    Arterial thrombosis is the primary cause of most cases of myocardial infarction and stroke, the leading causes of death in the developed world. Platelets, highly specialized cells of the circulatory system, are key contributors to thrombotic events. Antiplatelet drugs, which prevent platelets from aggregating, have been very effective in reducing the mortality and morbidity of these conditions. However, approved antiplatelet therapies have adverse side effects, most notably the increased risk of bleeding. Moreover, there remains a considerable incidence of arterial thrombosis in a subset of patients receiving currently available drugs. Thus, there is a pressing medical need for novel antiplatelet agents with a more favorable safety profile and less patient resistance. The discovery of novel antiplatelet targets is the matter of intense ongoing research. Recent findings demonstrate the potential of targeting key signaling molecules, including kinases and phosphatases, to prevent platelet activation and aggregation. Here, we offer perspectives to targeting members of the protein tyrosine phosphatase (PTP) superfamily, a major class of enzymes in signal transduction. We give an overview of previously identified PTPs in platelet signaling, and discuss their potential as antiplatelet drug targets. We also introduce VHR (DUSP3), a PTP that we recently identified as a major player in platelet biology and thrombosis. We review our data on genetic deletion as well as pharmacological inhibition of VHR, providing proof-of-principle for a novel and potentially safer VHR-based antiplatelet therapy

    Functional analysis of protein tyrosine phosphatases in thrombosis and haemostasis

    Full text link
    peer reviewedPlatelets are small blood cells derived from cytoplasmic fragments of megakaryocytes and play an essential role in thrombosis and haemostasis. Platelet activation depends on the rapid phosphorylation and dephosphorylation of key signaling molecules, and a number of kinases and phosphatases have been identified as major regulators of platelet function. However, the investigation of novel signaling proteins has suffered from technical limitations due to the anucleate nature of platelets and their very limited levels of mRNA and de novo protein synthesis. In the past, experimental methods were restricted to the generation of genetically modified mice and the development of specific antibodies. More recently, novel (phospho)proteomic technologies and pharmacological approaches using specific small-molecule inhibitors have added additional capabilities to investigate specific platelet proteins. In this chapter, we report methods for using genetic and pharmacological approaches to investigate the function of platelet signaling proteins. While the described experiments focus on the role of the dual-specificity phosphatase 3 (DUSP3) in platelet signaling, the presented methods are applicable to any signaling enzyme. Specifically, we describe a testing strategy that includes 1) aggregation and secretion experiments with mouse and human platelets, 2) immunoprecipitation and immunoblot assays to study platelet signaling events, 3) detailed protocols to use selected animal models in order to investigate thrombosis and haemostasis in vivo, and 4) strategies for utilizing pharmacological inhibitors on human platelets
    corecore