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Abstract A novel human dual-specific protein phosphatase
(DSP), designated DUSP27, is here described. The DUSP27
gene contains three exons, rather than the predicted 4–14 exons,
and encodes a 220 amino acid protein. DUSP27 is structurally
similar to other small DSPs, like VHR and DUSP13. The loca-
tion of DUSP27 on chromosome 10q22, 50 kb upstream of
DUSP13, suggests that these two genes arose by gene duplica-
tion. DUSP27 is an active enzyme, and its kinetic parameters
and were determined. DUSP27 is a cytosolic enzyme, expressed
in skeletal muscle, liver and adipose tissue, suggesting its possible
role in energy metabolism.
� 2007 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Reversible protein tyrosine phosphorylation, mediated by

protein tyrosine kinases (PTKs) and protein tyrosine phospha-

tases (PTPs), plays a vital role in the regulation of multiple

processes within the living cell and in its interactions with

extracellular factors [1]. While many PTKs have been exten-

sively studied, much less attention has been paid to their coun-

terparts, the PTPs. New and unexpected PTP functions are still

discovered, including mitochondrial tasks, which affect insulin

secretion [2] and apoptosis [3], as well as control of vesicle fu-

sion [4], and regulation of potassium channels [5].

More than a hundred genes for PTPs are present in the

human genome and about 60 of them are structurally classified

as dual-specific phosphatases (DSPs). Among these was a sin-

gle gene, which was not covered by any expressed signal tags

[1]. This computationally predicted ORF (gi:4265934,

XM_291741.4), designated DUPD1 (for dual specific phospha-
Abbreviations: DiFMUP, 6,8-difluoro-4-methylumbelliferyl phos-
phate; DSP, dual-specific protein phosphatase; DUPD1, dual-specific
protein phosphatase domain containing 1; DUSP27, dual-specific
phosphatase 27; His6-DUSP, histidine epitope-tagged DUSP27; HA-
DUSP27, hemagglutinin epitope-tagged DUSP27; InsP, inositol-
phosphate; pNPP, p-nitrophenyl phosphate; PTK, protein tyrosine
kinase; PTP, protein tyrosine phosphatase; VHR, VH1 related
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tase and pro isomerase domain containing 1), had 446 amino

acid residues and contained a cyclophilin-like domain in addi-

tion to its catalytic phosphatase domain. The pro-isomerase

domain, however, was later removed from the predicted

DUPD1 sequence, leaving the name DUPD1 a misnomer.

The gene is now officially referred to as dual specificity phos-

phatase 27 (DUSP27).

In this study we set out to find whether this predicted en-

zyme is expressed, and, if so, to determine its structure and

to begin its characterization.
2. Materials and methods

2.1. Materials
Human cDNA was obtained from BD Biosciences-Clontech (Palo

Alto, CA) and from Biochain (Hayward, CA). Primers were obtained
from Invitrogen Corporation (Carlsbad, CA), and from Valuegene
(San Diego, CA). Titanium Taq DNA polymerase kit and Platinum
Taq DNA polymerase were obtained from BD Biosciences-Clontech
and from Invitrogen Corporation, respectively. Membranes for North-
ern blot were obtained from Ambion (Austin, TX) and from Biochain.
[32P]dCTP was purchased from Amersham (Piscataway, NJ). QIA-
quick Gel Extraction Kit, QIAquick PCR purification kit, and
Ni-NTA-Agarose beads were from QIAGEN (Valencia, CA). Primer
Kit II, the plasmid pET28a(+) and E. coli BL21 (DE3) cells were from
Stratagene (La Jolla, CA); the plasmid pEF3HA was designed in our
laboratory [6]. Phosphotyrosine and phosphothreonine were obtained
from Sigma–Aldrich (St. Louis, MO) and phosphoserine from PM
Biochemicals (Solon, OH). Biomol Green was purchased from Biomol
(Plymouth Meeting, PA), and 6,8-difluoro-4-methylumbelliferyl phos-
phate (DiFMUP) was obtained from Invitrogen Corporation.

2.2. PCR amplification and DNA sequencing
DUSP27 was sought for in human cDNA libraries by employing

PCR, using Titanium Taq polymerase kit with the primers ATG ACA
TCT GGA GAG TGA AGA CAA GC and CTA CAC TCC CTG
CCA TCC TC, matching nucleotides 1–27 and 741–721, respectively,
of the published DNA sequence of DUSP27 (741 nucleotides in 4 exons).
Detection of 5 0 non-coding and 3 0 non-translated regions of DUSP27
was performed by using PCR and sequencing, with the primers AAC
CAG CTG CAG AAA GGA GA and AAT GTA GAG CTT GGG
CCA GA, corresponding to nucleotides 40–20 before the initiation co-
don, and nucleotides 100–120 after the stop codon, respectively. PCR
was carried out by using either Titanium Taq DNA polymerase kit or
Platinum Taq DNA polymerase, according to the manufacturer instruc-
tions, for 35 cycles. The PCR products were purified by using either
QIIAquick PCR purification kit, or by Agarose gel electrophoresis, fol-
lowed by DNA extraction with QIAquick Gel Extraction Kit. The DNA
preparations were sequenced in the Burnham Institute facilities.

2.3. Northern blots
DUSP27 DNA was isolated from pET28a(+) plasmid containing the

DUSP27 insert, using the enzyme EcoRI, and purified by gel electro-
blished by Elsevier B.V. All rights reserved.
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phoresis and the QIAquick Gel Extraction Kit. The isolated DUSP27
DNA was radioactively labeled with [32P]-dCTP, using Primer Kit II,
according to the manufacturer instructions, and was used as a probe
for Northern blot. Charged nylon membranes, containing RNA sam-
ples from various tissues, were incubated with the radioactive probe,
washed and exposed to X-ray film.

2.4. Three-dimensional model
The DUSP27 model was built using a comparative modeling ap-

proach, based on the structure of VHR (PDB code 1vhr) and by using
fold prediction metaserver alignment [7]. Modeling was done
Fig. 1. Organization of the DUSP27 gene and its amino acid sequence. (A
resulted in a DNA (lane 1), the sequence of which composed of the protein ex
q22.3 of human chromosome 10, including DUSP27 gene (LOC441567). No
structure of the DUSP27 gene. The untranslated sequences of exon 1 and 3 a
DNA as a probe, and a membrane containing RNA from (1) brain, (2) placen
lung, (9) spleen, and (10) colon. (E) Deduced amino acid sequence of DUSP2
sequence related to exon 2 is in gray. Amino acids of the active site of the e
by SWISS-MODEL [8]. Images were generated using iMol version
0.30 (Pirx) and MOLCAD as implemented in SYBYL version 7.0
(Tripos).

2.5. Expression plasmids, recombinant protein, and antibodies
The cDNA for DUSP27 was cloned into the prokaryotic expression

vector pET28a(+), and into eukaryotic plasmid pEF3HA, which add
N-terminal His6 tag, or C-terminal hemagglutinin tag (HA-tag) to
the insert, respectively. Recombinant DUSP27 protein was produced
in E. coli BL21 (DE3) cells, transformed with pET28a(+) plasmid con-
taining the DUSP27 insert. The His6-DUSP27 was isolated from the
) Polymerase chain reaction amplification of skeletal muscle cDNA
pression parts of exons 1, 2, and 3. M, MW markers. (B) Region q22.2–
te that DUSP13 is �50 kb upstream of DUSP27. (C) Exon and intron
re not shown. (D) Northern blot, using radioactively labeled DUSP27
ta, (3) skeletal muscle, (4) heart, (5), kidney (6), pancreas, (7) liver, (8),

7. The protein sequences related to exons 1 and 3 are in black, while the
nzyme are underlined.



I. Friedberg et al. / FEBS Letters 581 (2007) 2527–2533 2529
E. coli lysate by using Ni-NTA-agarose beads column. Polyclonal rab-
bit antisera were raised against this recombinant protein and were used
at 1:1000 dilution.

2.6. Phosphatase activity assay
The reaction mixture (0.1 ml) for kinetics parameters determination

contained 0.1 M Bis–Tris buffer, pH 6.0, 0.15 M NaCl, 1 mM dithio-
treitol, 0.125 to 8.0 mM p-nitrophenyl phosphate (pNPP), and 1.2 lg
of His6-DUSP27. After 20 min incubation at 30 �C the reaction was
terminated by addition of 0.1 ml of 0.1 M NaOH, and the absorbance
at 405 nm was read by using Elx808 microplate reader (Bio-Tek Instru-
ments). The Km and Kcat values were determined by fitting the data in
to the Michaelis–Menten equations, using non-linear regression and
the program GraphPad Prism� (version 4.0). The substrate specificity
of DUSP27 was determined under similar conditions, except for using
10 mM phospho-amino acids as substrates. The reaction was termi-
nated after 45 min incubation by addition of 0.2 ml Biomol Green,
and the absorbance was read at 620 nm. The pH dependence activity
was determined under similar conditions, except for using 15 ng
DUSP27, 20 lM DiFMUP as a substrate, and the following buffers:
Fig. 2. Species orthologs and human homologs of DUSP27. (A) Alignment
Gray shading indicates identity to human DUSP27. The PTP signature sequ
closest human homologs.
sodium citrate for pH 4.5/5.0/5.5, Bis–Tris for pH 6.0/6.5/7.0, and Tri-
sÆHCl for pH 7.5/8.0/8.5. Product fluorescence was determined at
460 nm (excitation at 340 nm) 10 min after reaction initiation.
2.7. Mouse tissues and cell lines
Mouse tissues were dissected from Balb/c mice. HeLa and Jurkat

cells were grown in RPMI 1640 medium supplemented with 10% bo-
vine calf serum, 2 mM LL-glutamine, 1 mM sodium pyruvate, non-
essential amino acids, 100 U/ml penicillin G and 100 lg/ml streptomy-
cin. HeLa cells were transfected with 5–10 lg DNA by lipofection and
Jurkat cells by electroporation. Empty vector was added to control
samples.
2.8. SDS–PAGE and immunoblotting
Cell lysis buffer contained 20 mM TrisÆHCl, pH 7.5, 150 mM NaCl

5 mM EDTA, 1% Nonidet P-40, 1 mM Na3VO4, 10 lg/ml aprotinin,
10 lg/ml leupeptin, 100 lg/ml soybean trypsin inhibitor and 1 mM
phenylmethylsulphonyl fluoride. Cell lysates were clarified by centrifu-
gation at 16000 · g for 20 min. Then samples were subjected to
of human, chimpanzee, rat, mouse, chicken, frog, and fish DUSP27.
ence is boxed. (B) PTP signature sequence in DUSP27 compared the
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SDS–PAGE, electrophoretically transferred to nitrocellulose filters,
which were immunoblotted with 1:1000 anti-DUSP27, followed by
anti-rabbit-Ig-peroxidase, and the blots were developed by using
ECL kit (Amersham).
3. Results and discussion

3.1. ‘Cyclophilin-like’ is not cyclophilin-like

During our efforts to catalogue all functional PTP genes in

the human genome, we came across a computationally pre-
Fig. 3. Computer model of the three-dimensional structure of DUSP27. (A
VHR (PDB code 1VHR). The cartoon was generated by using iMol version
DUSP27 and VHR colored for electrostatic potential (C), and lipophilic pot
and VHR, colored for electrostatic potential. (G) and (H), Surface representat
The molecular surfaces were generated with MOLCAD in SYBYL version
structure of VHR. The color code of MOLCAD represents electrostatic poten
(brown, more lipophilic; blue, more hydrophilic).
dicted ORF encoding 446 amino acid residues and two cata-

lytic domains, a proline isomerase and a DSP [1]. To

determine whether this is a functional gene we used a combina-

tion of primers for the conserved sequence in the enzyme. The

largest obtained amplification product (Fig. 1A) consisted of a

sequence that represented only three of the predicted protein-

coding sequences, 200, 221, and 242 bp, respectively (Fig. 1B

and C). Thus, the computationally predicted four to fourteen

exons in various databases likely include intronic sequences

erroneously designated as exons. The conclusion that the pro-

tein-coding part of the mRNA consists of 663 bp was sup-
) and (B) Model of the a-helix/b-strand fold of DUSP27 compared to
0.30 (Pirx). (C) and (D), Comparison of substrate-binding surfaces of

ential (D). (E) and (F) Surface representation of active site of DUSP27
ion of active site of DUSP27 and VHR, colored for lipophilic potential.
7.0 (Tripos), using the computer model of DUSP27 and the crystal
tial (red, most positive; purple, most negative), and lipophilic potential
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ported by additional findings: cDNA from human skeletal

muscle was subjected to PCR, using primers corresponding

to nucleotide sequences in the 5 0 non-translated and in the 3 0

non-coding regions. The obtained PCR product consisted of

821 bp, 41 of which are before the initiation codon, and 117

after the stop codon, the sequence of which is identical to

the corresponding part of the gene in the NCBI gene bank.

The presence of these regions indicates that the probability

of additional upstream or down stream exons is very low. In

addition, the size of mRNA from human skeletal muscle is

about 1000 bp, as determined by Northern blotting

(Fig. 1D). Finally, there is a stop codon 66 bp upstream the

initiation codon. Taken together, these finding support the

conclusion that the protein encoding part of the mRNA con-

sists of 663 bp in three exons, which constitutes an ORF that

translates into a 220-amino acid protein (Fig. 1E), with a per-

fect alignment with several known small DSPs, like VH1 re-

lated (VHR) (DUSP3), and the two products of the DUSP13
Fig. 4. Catalytic activity of recombinant DUSP27. (A) Coomassie Blue stain
transformed with pET28a(+) plasmid containing DUSP27 insert before induc
its supernatant, clarified by centrifugation (lane 4). The Hise6-DUSP27 prote
kinetics His6-DUSP27, using pNPP as a substrate. (C) pH profile of
phosphotyrosine (P-Tyr), phosphothreonine (P-Thr), and phosphoserine (P-

Table 1
Kinetics parameters of DUSP27 and related phosphatases

DUSP27 VHZa

Km (mM) 1.02 ± 0.091 1.498 ± 0.164
Kcat (s�1) 0.30 ± 0.009 0.009 ± 0.0004

aRefs. [10,11].
gene(s), TMDP and BEDP. Thus, the new gene expresses a

transcript with 3 exons that encode a regular member of the

group of ‘atypical’ DSPs without any cyclophilin-like region.

The original name DUPD1 therefore is a misnomer and is

now replaced by the designation DUSP27 (Accession

AAT94288).

3.2. DUSP27 is evolutionary conserved

Apparent species orthologs of DUSP27 (Fig. 2A) were

found in a variety of organisms from primates (chimpanzee;

97% identity), other mammals (e.g., mouse, rat and dog,

87%, 86% and 81% identity, respectively), chicken (70% iden-

tity), to amphibians (Xenopus tropicalis; 76% identity) and fish

(Tetraodon; 59% identity). The two proteins encoded by

DUSP13 (termed BEDP and TMDP) were also present in

mammals and in chicken, and were 50–53% identical to

DUSP27 in the same species, but such a combination of these

enzymes was not detected in lower species. Thus, it appears
of SDS gel with samples from: Suspension of E. coli BL21(DE3) cells,
tion (lane 1), or after IPTG induction (lane 2). Cell lysate (lane 3), and
in eluted from Ni-NTA-agarose beads (lane 5). (B) Michaelis–Menten

the His6-DUSP27-catalyzed reaction. (D) Dephosphorylation of
Ser), by His6-DUSP27.

VHla VHXa VHYa

1.214 ± 0.067 0.412 ± 0.023 0.199 ± 0.014
0.904 ± 0.016 0.400 ± 0.006 0.136 ± 0.002
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likely that a gene duplication event gave rise to the DUSP27/

DUSP13 pair prior to the divergence of mammals from the

avian/dinosaur lineage more than 180 million years ago.

The canonical protein tyrosine phosphatase (PTP) (includ-

ing DSPs) consensus sequence (HCX2GX2R) of DUSP27,

HCVMGRSR, is unusual in that it has an arginine after the

conserved glycine (Fig. 2B). This feature is also found in

VHP [1], in the inactive tensin (TNS) and in PTPMT1 (MOSP

in Ref. [1]). However, other InsP-specific phosphatases, includ-
Fig. 5. Tissue expression and subcellular location of DUSP27. (A) Western b
immune serum (lane 1) or anti-DUSP27 antiserum (lane 2). (B) Western bl
DUSP27 (lane 2), or 100 lg of lysate from the indicated mouse tissues (lan
about 2 kDa larger then the endogenous DUSP27. This difference is probabl
Immunofluorescence staining of HeLa cells transfected with HA-DUSP27 u
panel). DNA was stained with DAPI (upper right panel) and a Nomarski ph
the three images is shown in the bottom right panel. Note that DUSP27 sta
ing PTEN, tend to have a lysine residue at this location, as well

as an additional lysine or arginine immediately after the cata-

lytic cysteine, where DUSP27 has a valine. Thus, it is not likely

that DUSP27 is an inositol-phosphate (InsP)-specific enzyme.

3.3. Three-dimensional model of DUSP27 structure

To further test the 3-exon ORF, we constructed a three-

dimensional model of the DUSP27 protein. Using the 3-exon

sequence, the protein was readily modeled on the template of
lot of 10 ng recombinant DUSP27 resolved by SDS–PAGE using pre-
ot of Jurkat T cells transfected with empty vector (lane 1), with HA-
es 3–12), with anti-DUSP27 antiserum. Note that the HA-DUSP27 is
y due to the shorter mouse protein and to the addition of HA-tag. (C)
sing the Alexa Fluor� 488-conjugated anti-hemaggultinin (upper left

ase contrast image also taken of the cells (lower left panel). A merge of
ining is somewhat granular, and excluded from the nucleus.
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crystallized DSPs, like VHR (Fig. 3A and B). Inserting the

computationally predicted fourth exon between exons 2 and

3 results in the loss of the catalytic core machinery.

Interestingly, DUSP27 and VHR have reverse surface

charge patterns on their substrate-facing aspect (Fig. 3C), i.e.

DUSP27 is basic where VHR is acidic, and vice versa. The

lipophilic potential, however, is similar in both enzymes

(Fig. 3D). VHR was crystallized with a bound phosphopeptide

corresponding to the activation loop of MAP kinases [9]. The

phosphotyrosine residue of the phosphopeptide was anchored

in the catalytic pocket (‘P1’ in Fig. 3E and G), while a second

basic pocket (‘P2’) binds the phosphothreonine residue. The

amino acid residue between these two phosphoresidues inter-

acted with Q126 in VHR, which forms the ridge between the

two pockets. In comparison, DUSP27 has more acidic surface

(blue in Fig. 3C and F) surrounding the catalytic pockets (P1),

while the second pocket (P2) is much more acidic, and it not

likely to bind a phosphate. Furthermore, the ridge between

the two pockets is formed by a methionine residue (M149),

which would not interact with the peptide backbone of a sub-

strate. Instead, in DUSP27, a trench leads to a putative basic

pocket (‘P3’ in Fig. 3F and H). A dual-phosphorylated phos-

phopeptide would fit well into this grove, provided two amino

acid residues would separate the phosphorylated residues,

rather than one as in MAP kinase. Finally, the hydrophobicity

patterns of VHR and DUSP27 are similar; both are largely

hydrophilic and have two hydrophobic patches, one on each

side of the catalytic pocket (Fig. 3G and H). In DUSP27,

one of these is a tryptophan side chain that likely interacts with

the incoming substrate, which therefore may be a phosphoty-

rosine, rather than a phosphoserine or phosphothreonine. Ta-

ken together, these models strongly suggest that the

physiological substrates for DUSP27 are different than those

of VHR.

3.4. DUSP27 is a catalytically active phosphatase

The DUSP27 DNA was inserted into a plasmid and intro-

duced into E. coli to express recombinant DUSP27 protein

(Fig. 4A). The expressed DUSP27 protein had catalytic activ-

ity, expressed by dephosphorylation of pNPP and DiFMUP

(Fig. 4B and C). The kinetics parameters were found to be:

Km 1.02 ± 0.09 mM, Vmax 0.132 ± 0.004 lM s�1 (determined

with 0.4 lM DUSP27), Kcat 0.330 ± 0.009 s�1, and Kcat/Km

0.325 mM�1 s�1. The pH optimum for DUSP27 was 5.5

(Fig. 4C). These kinetics parameters are similar to those ob-

tained for other small DSPs (Table 1). Free phosphotyrosine

was also a good substrate, while phosphothreonine and phos-

phoserine were much less readily dephosphorylated (Fig. 4D).

Thus, it appears that DUSP27, like VHR [9], prefers phospho-

tyrosine. These findings are in agreement with the enzymatic

specificity predicted by inspecting three-dimensional model of

the enzyme (Section 3.3).

3.5. Tissue and cellular localization of DUSP27

Anti-DUSP27 antisera were obtained by immunizing rabbits

with His6-tagged full-length DUSP27 and they reacted very

well with the recombinant protein (Fig. 5A), as well as with

HA-tagged DUSP27 expressed in mammalian cells (Fig. 5B
lane 2). The antiserum also reacted strongly with a protein

of �23 kDa in several mouse tissues, notably in skeletal mus-

cle, liver, and fat (Fig. 5B). A weak band was seen in thymus,

kidney and heart. Finally, confocal microscopy of HeLa cells

transfected with hemagglutinin epitope-tagged DUSP27

(HA-DUSP27) and stained with the mAb against its epitope

tag showed that DUSP27 is a cytosolic enzyme with a some-

what granular staining, but excluded from the nucleus

(Fig. 5C).

In conclusion, we have begun the characterization of a novel

DSP, which is highly expressed in skeletal muscle, adipose tis-

sue and liver, central tissues for energy metabolism. Future

experiments will elucidate whether DUSP27 is involved in

the regulation of energy metabolism.
Note added in proof

Recent alterations in the phosphatase nomenclature by

HUGO-Gene Nomenclature Committee establish the name

DUSP27 for the enzyme described in this paper (aliases:

DUPD1; FMDSP), whereas the putative enzyme formerly

called DUSP27 is now designated STYXL2.
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