334 research outputs found

    Dynamical Systems Gradient method for solving nonlinear equations with monotone operators

    Full text link
    A version of the Dynamical Systems Gradient Method for solving ill-posed nonlinear monotone operator equations is studied in this paper. A discrepancy principle is proposed and justified. A numerical experiment was carried out with the new stopping rule. Numerical experiments show that the proposed stopping rule is efficient. Equations with monotone operators are of interest in many applications.Comment: 2 figure

    Localization via fractional moments for models on Z\mathbb{Z} with single-site potentials of finite support

    Full text link
    One of the fundamental results in the theory of localization for discrete Schr\"odinger operators with random potentials is the exponential decay of Green's function and the absence of continuous spectrum. In this paper we provide a new variant of these results for one-dimensional alloy-type potentials with finitely supported sign-changing single-site potentials using the fractional moment method.Comment: LaTeX-file, 26 pages with 2 LaTeX figure

    Adaptive estimation in circular functional linear models

    Get PDF
    We consider the problem of estimating the slope parameter in circular functional linear regression, where scalar responses Y1,...,Yn are modeled in dependence of 1-periodic, second order stationary random functions X1,...,Xn. We consider an orthogonal series estimator of the slope function, by replacing the first m theoretical coefficients of its development in the trigonometric basis by adequate estimators. Wepropose a model selection procedure for m in a set of admissible values, by defining a contrast function minimized by our estimator and a theoretical penalty function; this first step assumes the degree of ill posedness to be known. Then we generalize the procedure to a random set of admissible m's and a random penalty function. The resulting estimator is completely data driven and reaches automatically what is known to be the optimal minimax rate of convergence, in term of a general weighted L2-risk. This means that we provide adaptive estimators of both the slope function and its derivatives

    Localization criteria for Anderson models on locally finite graphs

    Full text link
    We prove spectral and dynamical localization for Anderson models on locally finite graphs using the fractional moment method. Our theorems extend earlier results on localization for the Anderson model on \ZZ^d. We establish geometric assumptions for the underlying graph such that localization can be proven in the case of sufficiently large disorder

    Attenuation of the heartbeat-evoked potential in patients with atrial fibrillation

    Get PDF
    Background The heartbeat-evoked potential (HEP) is a brain response to each heartbeat, which is thought to reflect cardiac signaling to central autonomic areas and suggested to be a marker of internal body awareness (e.g., interoception). Objectives Because cardiac communication with central autonomic circuits has been shown to be impaired in patients with atrial fibrillation (AF), we hypothesized that HEPs are attenuated in these patients. Methods By simultaneous electroencephalography and electrocardiography recordings, HEP was investigated in 56 individuals with persistent AF and 56 control subjects matched for age, sex, and body mass index. Results HEP in control subjects was characterized by right frontotemporal negativity peaking around 300 to 550 ms after the R-peak, consistent with previous studies. In comparison with control subjects, HEP amplitudes were attenuated, and HEP amplitude differences remained significant when matching the samples for heart frequency, stroke volume (assessed by echocardiography), systolic blood pressure, and the amplitude of the T-wave. Effect sizes for the group differences were medium to large (Cohen’s d between 0.6 and 0.9). EEG source analysis on HEP amplitude differences pointed to a neural representation within the right insular cortex, an area known as a hub for central autonomic control. Conclusions The heartbeat-evoked potential is reduced in AF, particularly in the right insula. We speculate that the attenuated HEP in AF may be a marker of impaired heart–brain interactions. Attenuated interoception might furthermore underlie the frequent occurrence of silent AF

    Regularization Methods for Ill-Posed Problems in Multiple Hilbert Scales

    Full text link
    Several convergence results in Hilbert scales under different source conditions are proved and orders of convergence and optimal orders of convergence are derived. Also, relations between those source conditions are proved. The concept of a multiple Hilbert scale on a product space is introduced, regularization methods on these scales are defined, both for the case of a single observation and for the case of multiple observations. In the latter case, it is shown how vector-valued regularization functions in these multiple Hilbert scales can be used. In all cases convergence is proved and orders and optimal orders of convergence are shown.Comment: 32 pages, 2 figure

    Regularized Linear Inversion with Randomized Singular Value Decomposition

    Get PDF
    In this work, we develop efficient solvers for linear inverse problems based on randomized singular value decomposition (RSVD). This is achieved by combining RSVD with classical regularization methods, e.g., truncated singular value decomposition, Tikhonov regularization, and general Tikhonov regularization with a smoothness penalty. One distinct feature of the proposed approach is that it explicitly preserves the structure of the regularized solution in the sense that it always lies in the range of a certain adjoint operator. We provide error estimates between the approximation and the exact solution under canonical source condition, and interpret the approach in the lens of convex duality. Extensive numerical experiments are provided to illustrate the efficiency and accuracy of the approach.Comment: 20 pages, 4 figure

    Anderson localization for a class of models with a sign-indefinite single-site potential via fractional moment method

    Full text link
    A technically convenient signature of Anderson localization is exponential decay of the fractional moments of the Green function within appropriate energy ranges. We consider a random Hamiltonian on a lattice whose randomness is generated by the sign-indefinite single-site potential, which is however sign-definite at the boundary of its support. For this class of Anderson operators we establish a finite-volume criterion which implies that above mentioned the fractional moment decay property holds. This constructive criterion is satisfied at typical perturbative regimes, e. g. at spectral boundaries which satisfy 'Lifshitz tail estimates' on the density of states and for sufficiently strong disorder. We also show how the fractional moment method facilitates the proof of exponential (spectral) localization for such random potentials.Comment: 29 pages, 1 figure, to appear in AH

    Low lying spectrum of weak-disorder quantum waveguides

    Full text link
    We study the low-lying spectrum of the Dirichlet Laplace operator on a randomly wiggled strip. More precisely, our results are formulated in terms of the eigenvalues of finite segment approximations of the infinite waveguide. Under appropriate weak-disorder assumptions we obtain deterministic and probabilistic bounds on the position of the lowest eigenvalue. A Combes-Thomas argument allows us to obtain so-called 'initial length scale decay estimates' at they are used in the proof of spectral localization using the multiscale analysis.Comment: Accepted for publication in Journal of Statistical Physics http://www.springerlink.com/content/0022-471
    • …
    corecore