28 research outputs found

    Analysis of Array-CGH Data Using the R and Bioconductor Software Suite

    Get PDF
    Background. Array-based comparative genomic hybridization (array-CGH) is an emerging high-resolution and high-throughput molecular genetic technique that allows genome-wide screening for chromosome alterations. DNA copy number alterations (CNAs) are a hallmark of somatic mutations in tumor genomes and congenital abnormalities that lead to diseases such as mental retardation. However, accurate identification of amplified or deleted regions requires a sequence of different computational analysis steps of the microarray data. Results. We have developed a user-friendly and versatile tool for the normalization, visualization, breakpoint detection, and comparative analysis of array-CGH data which allows the accurate and sensitive detection of CNAs. Conclusion. The implemented option for the determination of minimal altered regions (MARs) from a series of tumor samples is a step forward in the identification of new tumor suppressor genes or oncogenes

    Improved bi-allelic modification of a transcriptionally silent locus in patient-derived iPSC by Cas9 nickase

    No full text
    Homology directed repair (HDR)-based genome editing via selectable long flanking arm donors can be hampered by local transgene silencing at transcriptionally silent loci. Here, we report efficient bi-allelic modification of a silent locus in patient-derived hiPSC by using Cas9 nickase and a silencing-resistant donor construct that contains an excisable selection/counter-selection cassette. To identify the most active single guide RNA (sgRNA)/nickase combinations, we employed a lentiviral vector-based reporter assay to determine the HDR efficiencies in cella. Next, we used the most efficient pair of sgRNAs for targeted integration of an improved, silencing-resistant plasmid donor harboring a piggyBac-flanked puro Delta tk cassette. Moreover, we took advantage of a dual-fluorescence selection strategy for bi-allelic targeting and achieved 100% counter-selection efficiency after bi-allelic excision of the selection/counter-selection cassette. Together, we present an improved system for efficient bi-allelic modification of transcriptionally silent loci in human pluripotent stem cells
    corecore