489 research outputs found

    The Seiberg-Witten equations and the Weinstein conjecture

    Full text link
    Let M denote a compact, oriented 3-manifold and let a denote a contact 1-form on M. This article proves that the vector field that generates the kernel of the 2-form da has at least one closed, integral curve.Comment: This new version has some minor correction

    Saddle point solutions in Yang-Mills-dilaton theory

    Get PDF
    The coupling of a dilaton to the SU(2)SU(2)-Yang-Mills field leads to interesting non-perturbative static spherically symmetric solutions which are studied by mixed analitical and numerical methods. In the abelian sector of the theory there are finite-energy magnetic and electric monopole solutions which saturate the Bogomol'nyi bound. In the nonabelian sector there exist a countable family of globally regular solutions which are purely magnetic but have zero Yang-Mills magnetic charge. Their discrete spectrum of energies is bounded from above by the energy of the abelian magnetic monopole with unit magnetic charge. The stability analysis demonstrates that the solutions are saddle points of the energy functional with increasing number of unstable modes. The existence and instability of these solutions are "explained" by the Morse-theory argument recently proposed by Sudarsky and Wald.Comment: 11 page

    Gravitating Monopole--Antimonopole Chains and Vortex Rings

    Full text link
    We construct monopole-antimonopole chain and vortex solutions in Yang-Mills-Higgs theory coupled to Einstein gravity. The solutions are static, axially symmetric and asymptotically flat. They are characterized by two integers (m,n) where m is related to the polar angle and n to the azimuthal angle. Solutions with n=1 and n=2 correspond to chains of m monopoles and antimonopoles. Here the Higgs field vanishes at m isolated points along the symmetry axis. Larger values of n give rise to vortex solutions, where the Higgs field vanishes on one or more rings, centered around the symmetry axis. When gravity is coupled to the flat space solutions, a branch of gravitating monopole-antimonopole chain or vortex solutions arises, and merges at a maximal value of the coupling constant with a second branch of solutions. This upper branch has no flat space limit. Instead in the limit of vanishing coupling constant it either connects to a Bartnik-McKinnon or generalized Bartnik-McKinnon solution, or, for m>4, n>4, it connects to a new Einstein-Yang-Mills solution. In this latter case further branches of solutions appear. For small values of the coupling constant on the upper branches, the solutions correspond to composite systems, consisting of a scaled inner Einstein-Yang-Mills solution and an outer Yang-Mills-Higgs solution.Comment: 18 pages, 12 figures, uses revte

    Enumerative geometry of Calabi-Yau 4-folds

    Full text link
    Gromov-Witten theory is used to define an enumerative geometry of curves in Calabi-Yau 4-folds. The main technique is to find exact solutions to moving multiple cover integrals. The resulting invariants are analogous to the BPS counts of Gopakumar and Vafa for Calabi-Yau 3-folds. We conjecture the 4-fold invariants to be integers and expect a sheaf theoretic explanation. Several local Calabi-Yau 4-folds are solved exactly. Compact cases, including the sextic Calabi-Yau in CP5, are also studied. A complete solution of the Gromov-Witten theory of the sextic is conjecturally obtained by the holomorphic anomaly equation.Comment: 44 page

    Small coupling limit and multiple solutions to the Dirichlet Problem for Yang Mills connections in 4 dimensions - Part I

    Full text link
    In this paper (Part I) and its sequels (Part II and Part III), we analyze the structure of the space of solutions to the epsilon-Dirichlet problem for the Yang-Mills equations on the 4-dimensional disk, for small values of the coupling constant epsilon. These are in one-to-one correspondence with solutions to the Dirichlet problem for the Yang Mills equations, for small boundary data. We prove the existence of multiple solutions, and, in particular, non minimal ones, and establish a Morse Theory for this non-compact variational problem. In part I, we describe the problem, state the main theorems and do the first part of the proof. This consists in transforming the problem into a finite dimensional problem, by seeking solutions that are approximated by the connected sum of a minimal solution with an instanton, plus a correction term due to the boundary. An auxiliary equation is introduced that allows us to solve the problem orthogonally to the tangent space to the space of approximate solutions. In Part II, the finite dimensional problem is solved via the Ljusternik-Schirelman theory, and the existence proofs are completed. In Part III, we prove that the space of gauge equivalence classes of Sobolev connections with prescribed boundary value is a smooth manifold, as well as some technical lemmas used in Part I. The methods employed still work when the 4-dimensional disk is replaced by a more general compact manifold with boundary, and SU(2) is replaced by any compact Lie group

    Notes on bordered Floer homology

    Full text link
    This is a survey of bordered Heegaard Floer homology, an extension of the Heegaard Floer invariant HF-hat to 3-manifolds with boundary. Emphasis is placed on how bordered Heegaard Floer homology can be used for computations.Comment: 73 pages, 29 figures. Based on lectures at the Contact and Symplectic Topology Summer School in Budapest, July 2012. v2: Fixed many small typo

    Precise Determination of Electroweak Parameters in Neutrino-Nucleon Scattering

    Full text link
    A systematic error in the extraction of sin2θW\sin^2 \theta_W from nuclear deep inelastic scattering of neutrinos and antineutrinos arises from higher-twist effects arising from nuclear shadowing. We explain that these effects cause a correction to the results of the recently reported significant deviation from the Standard Model that is potentially as large as the deviation claimed, and of a sign that cannot be determined without an extremely careful study of the data set used to model the input parton distribution functions.Comment: 3pages, 0 figures, version to be published by IJMP

    Conservation Laws in a First Order Dynamical System of Vortices

    Full text link
    Gauge invariant conservation laws for the linear and angular momenta are studied in a certain 2+1 dimensional first order dynamical model of vortices in superconductivity. In analogy with fluid vortices it is possible to express the linear and angular momenta as low moments of vorticity. The conservation laws are compared with those obtained in the moduli space approximation for vortex dynamics.Comment: LaTex file, 16 page

    Cooling for instantons and the Wrath of Nahm

    Get PDF
    The dynamics of instantons and anti-instantons in lattice QCD can be studied by analysing the action and topological charge of configurations as they approach a self-dual or anti-self-dual state, i.e. a state in which S/S_0=|Q|. We use cooling to reveal the semi-classical structure of the configurations we study. Improved actions which eliminate discretization errors up to and including O(a^4) are used to stabilise instantons as we cool for several thousand sweeps. An analogously improved lattice version of the continuum field-strength tensor is used to construct a topological charge free from O(a^4) discretization errors. Values of the action and topological charge obtained with these improved operators approach mutually-consistent integer values to within a few parts in 10^4 after several hundred cooling sweeps. Analysis of configurations with |Q| \approx 1 and |Q| \approx 2 supports the hypothesis that a self-dual |Q|=1 configuration cannot exist on the 4-torus.Comment: 5 pages, 4 figures, talk presented at the workshop on Lattice Hadron Physics, Cairns Australia, July 200

    On field theory quantization around instantons

    Full text link
    With the perspective of looking for experimentally detectable physical applications of the so-called topological embedding, a procedure recently proposed by the author for quantizing a field theory around a non-discrete space of classical minima (instantons, for example), the physical implications are discussed in a ``theoretical'' framework, the ideas are collected in a simple logical scheme and the topological version of the Ginzburg-Landau theory of superconductivity is solved in the intermediate situation between type I and type II superconductors.Comment: 27 pages, 5 figures, LaTe
    corecore