59 research outputs found

    Hormonal control during infancy and testicular adrenal rest tumor development in males with congenital adrenal hyperplasia: a retrospective multicenter cohort study

    Get PDF
    IMPORTANCE Testicular adrenal rest tumors (TARTs), often found in male patients with congenital adrenal hyperplasia (CAH), are benign lesions causing testicular damage and infertility. We hypothesize that chronically elevated adrenocorticotropic hormone exposure during early life may promote TART development. OBJECTIVE This study aimed to examine the association between commencing adequate glucocorticoid treatment early after birth and TART development. DESIGN AND PARTICIPANTS This retrospective multicenter (n = 22) open cohort study collected longitudinal clinical and biochemical data of the first 4 years of life using the I-CAH registry and included 188 male patients (median age 13 years; interquartile range: 10-17) with 21-hydroxylase deficiency (n = 181) or 11-hydroxylase deficiency (n = 7). All patients underwent at least 1 testicular ultrasound. RESULTS TART was detected in 72 (38%) of the patients. Prevalence varied between centers. When adjusted for CAH phenotype, a delayed CAH diagnosis of >1 year, compared with a diagnosis within 1 month of life, was associated with a 2.6 times higher risk of TART diagnosis. TART onset was not predicted by biochemical disease control or bone age advancement in the first 4 years of life, but increased height standard deviation scores at the end of the 4-year study period were associated with a 27% higher risk of TART diagnosis. CONCLUSIONS AND RELEVANCE A delayed CAH diagnosis of >1 year vs CAH diagnosis within 1 month after birth was associated with a higher risk of TART development, which may be attributed to poor disease control in early life

    An EMT-Driven Alternative Splicing Program Occurs in Human Breast Cancer and Modulates Cellular Phenotype

    Get PDF
    Epithelial-mesenchymal transition (EMT), a mechanism important for embryonic development, plays a critical role during malignant transformation. While much is known about transcriptional regulation of EMT, alternative splicing of several genes has also been correlated with EMT progression, but the extent of splicing changes and their contributions to the morphological conversion accompanying EMT have not been investigated comprehensively. Using an established cell culture model and RNA–Seq analyses, we determined an alternative splicing signature for EMT. Genes encoding key drivers of EMT–dependent changes in cell phenotype, such as actin cytoskeleton remodeling, regulation of cell–cell junction formation, and regulation of cell migration, were enriched among EMT–associated alternatively splicing events. Our analysis suggested that most EMT–associated alternative splicing events are regulated by one or more members of the RBFOX, MBNL, CELF, hnRNP, or ESRP classes of splicing factors. The EMT alternative splicing signature was confirmed in human breast cancer cell lines, which could be classified into basal and luminal subtypes based exclusively on their EMT–associated splicing pattern. Expression of EMT–associated alternative mRNA transcripts was also observed in primary breast cancer samples, indicating that EMT–dependent splicing changes occur commonly in human tumors. The functional significance of EMT–associated alternative splicing was tested by expression of the epithelial-specific splicing factor ESRP1 or by depletion of RBFOX2 in mesenchymal cells, both of which elicited significant changes in cell morphology and motility towards an epithelial phenotype, suggesting that splicing regulation alone can drive critical aspects of EMT–associated phenotypic changes. The molecular description obtained here may aid in the development of new diagnostic and prognostic markers for analysis of breast cancer progression.National Institutes of Health (U.S.) (R01-HG002439)National Science Foundation (U.S.) (equipment grant)National Institutes of Health (U.S.) (Integrative Cancer Biology Program Grant U54-CA112967)David H. Koch Institute for Integrative Cancer Research at MIT (Ludwig Center for Metastasis Research)David H. Koch Institute for Integrative Cancer Research at MITMassachusetts Institute of Technology (Croucher Scholarship)Massachusetts Institute of Technology (Ludwig Fund postdoctoral fellowship)National Institutes of Health (U.S.) (NIH CA100324)National Institutes of Health (U.S.) (AECC9526-5267

    Ubiquitous molecular substrates for associative learning and activity-dependent neuronal facilitation.

    Get PDF
    Recent evidence suggests that many of the molecular cascades and substrates that contribute to learning-related forms of neuronal plasticity may be conserved across ostensibly disparate model systems. Notably, the facilitation of neuronal excitability and synaptic transmission that contribute to associative learning in Aplysia and Hermissenda, as well as associative LTP in hippocampal CA1 cells, all require (or are enhanced by) the convergence of a transient elevation in intracellular Ca2+ with transmitter binding to metabotropic cell-surface receptors. This temporal convergence of Ca2+ and G-protein-stimulated second-messenger cascades synergistically stimulates several classes of serine/threonine protein kinases, which in turn modulate receptor function or cell excitability through the phosphorylation of ion channels. We present a summary of the biophysical and molecular constituents of neuronal and synaptic facilitation in each of these three model systems. Although specific components of the underlying molecular cascades differ across these three systems, fundamental aspects of these cascades are widely conserved, leading to the conclusion that the conceptual semblance of these superficially disparate systems is far greater than is generally acknowledged. We suggest that the elucidation of mechanistic similarities between different systems will ultimately fulfill the goal of the model systems approach, that is, the description of critical and ubiquitous features of neuronal and synaptic events that contribute to memory induction

    Hippocampal - diencephalic - cingulate networks for memory and emotion: An anatomical guide

    Get PDF
    This review brings together current knowledge from tract tracing studies to update and reconsider those limbic connections initially highlighted by Papez for their presumed role in emotion. These connections link hippocampal and parahippocampal regions with the mammillary bodies, the anterior thalamic nuclei, and the cingulate gyrus, all structures now strongly implicated in memory functions. An additional goal of this review is to describe the routes taken by the various connections within this network. The original descriptions of these limbic connections saw their interconnecting pathways forming a serial circuit that began and finished in the hippocampal formation. It is now clear that with the exception of the mammillary bodies, these various sites are multiply interconnected with each other, including many reciprocal connections. In addition, these same connections are topographically organised, creating further subsystems. This complex pattern of connectivity helps explain the difficulty of interpreting the functional outcome of damage to any individual site within the network. For these same reasons, Papez’s initial concept of a loop beginning and ending in the hippocampal formation needs to be seen as a much more complex system of hippocampal–diencephalic–cingulate connections. The functions of these multiple interactions might be better viewed as principally providing efferent information from the posterior medial temporal lobe. Both a subcortical diencephalic route (via the fornix) and a cortical cingulate route (via retrosplenial cortex) can be distinguished. These routes provide indirect pathways for hippocampal interactions with prefrontal cortex, with the preponderance of both sets of connections arising from the more posterior hippocampal regions. These multi-stage connections complement the direct hippocampal projections to prefrontal cortex, which principally arise from the anterior hippocampus, thereby creating longitudinal functional differences along the anterior–posterior plane of the hippocampus

    Hippocampal synaptic plasticity, spatial memory and anxiety

    Full text link

    Hippocampal Mechanisms for the Segmentation of Space by Goals and Boundaries

    Get PDF

    Four-Dimensional Consciousness

    Full text link

    Abiotic synthesis of amino acids and self-crystallization under prebiotic conditions

    No full text
    Building on previous research on the origin and homochirality of life, this study focuses on analyses profiling important building blocks of life: the natural amino acids. The spark discharge variation of the iconic Miller experiment was performed with a reducing gas mixture of ammonia, methane, water and hydrogen. Amino acid analysis using liquid chromatography coupled with tandem mass spectrometry after pre-column derivatizaiton revealed the generation of several amino acids including those essential for life. Re-crystallization of the synthetic products and enantiomeric ratio analysis were subsequently performed. Results from liquid chromatography coupled with either fluorescent detector or tandem mass spectrometry after pre-column derivatization with chiral reagent revealed spontaneous and effective asymmetric resolution of serine and alanine. This work describes a useful analytical platform for investigation of hypotheses regarding the origin and homochirality of amino acids under prebiotic conditions. The formation of numerous amino acids in the electric discharge experiment and the occurrence of high enantiomeric ratios of amino acids in re-crystallization experiment give valuable implications for future studies in unraveling fundamental questions regarding origins and evolution of life
    • …
    corecore