29 research outputs found

    Depth-dependent δ13 C trends in platform and slope settings of the Campbellrand-Malmani carbonate platform and possible implications for Early Earth oxygenation

    Get PDF
    Highlights • Carbon cycle of Neoarchean carbonate platform and potential oxygen oasis. • Carbon isotopes reveal a shift to aerobic biosphere and increasing oxidation state. • Rare earth element patterns reveal decrease in open ocean water influx. • Rimmed margin architecture was crucial for evolution of aerobic ecosystems. Abstract The evolution of oxygenic photosynthesis is widely seen as the major biological factor for the profound shift from reducing to slightly oxidizing conditions in Earth’s atmosphere during the Archean-Proterozoic transition period. The delay from the first biogenic production of oxygen and the permanent oxidation of Earth’s atmosphere during the early Paleoproteorozoic Great Oxidation Event (GOE) indicates that significant environmental modifications were necessary for an effective accumulation of metabolically produced oxygen. Here we report a distinct temporal shift to heavier carbon isotope signatures in lagoonal and intertidal carbonates (δ13Ccarb from -1.6 to +0.2 ‰, relative to VPDB) and organic matter (δ13Corg from about -40 to -25 ‰, relative to VPDB) from the 2.58–2.50 Gy old shallow–marine Campbellrand-Malmani carbonate platform (South Africa). This indicates an increase in the burial rate of organic matter caused by enhanced primary production as well as a change from an anaerobic to an aerobic ecosystem. Trace element data indicate limited influx of reducing species from deep open ocean water into the platform and an increased supply of nutrients from the continent, both supporting primary production and an increasing oxidation state of the platform interior. These restricted conditions allowed that the dissolved inorganic carbon (DIC) pool in the platform interior developed differently than the open ocean. This is supported by coeval carbonates from the marginal slope setting, which had a higher interaction with open ocean water and do not record a comparable shift in δ13Ccarb throughout the sequence. We propose that the emergence of stable shallow-water carbonate platforms in the Neoarchean provided ideal conditions for the evolution of early aerobic ecosystems, which finally led to the full oxidation of Earth’s atmosphere during the GOE

    Mineralogy and geochemistry of the sedimentary kaolin deposits from Sinai, Egypt : Implications for control by the source rocks

    No full text
    Abstract-Mineralogical and geochemical variations among the Carboniferous and Cretaceous sedimentary kaolin deposits from Sinai provided an opportunity to examine the effect of the source area on compositions of the deposits. The Carboniferous kaolin deposits are mineralogically and geochemically heterogeneous. The Khaboba and Hasbar deposits consist of kaolinite, quartz, anatase, illite, chlorite, zircon, and leucoxene. The shale-normalized rare earth element (REE) patterns of the Khaboba deposit showed a slight LREE over HREE enrichment ((La/Yb) =1.19 1.51) with a MREE depletion (Gd/ Gd* =0.51 0.75), while the Hasbar kaolin had a MREE enrichment. The Abu Natash kaolin deposit consisted of kaolinite, anatase, and a little quartz with larger TiO, Cr, and V and smaller Zr and Nb contents compared to other Carboniferous deposits. The shale-normalized REE patterns of the Abu Natash deposit exhibited a positive Eu anomaly (Eu/Eu* =1.28 1.40) and a MREE enrichment (Gd/Gd* = 1.41 2.05). The Cretaceous deposits were relatively homogeneous in terms of mineralogical composition and geochemistry and are composed of kaolinite, quartz, anatase, rutile, zircon, and leucoxene. The Cretaceous kaolin deposits showed mostly flat shale-normalized REE patterns with a variable LREE depletion. The presence of illite and chlorite, the absence of rutile, large Zr and Nb contents, and the REE patterns suggested a component of weathered low-grade metasediments as a source for the Carboniferous deposits in the Khaboba and Hasbar areas, while the large Ti, Cr, and V, and small quartz contents indicated mafic source rocks for the Abu Natash deposit. The abundance of high-Cr rutile and the absence of illite and chlorite, and large Zr, Ti, Cr, and V contents suggested a mixture of medium- to high-grade metamafic and granitic rocks as source rocks for the Cretaceous kaolin deposits. The occurrence of alkaline rocks in the source of the deposits studied was identified by high-Nb contents and the presence of bastnaesite. The mineralogical and geochemical heterogeneity and lesser maturity of the Carboniferous deposits suggested local sources for each deposit and their deposition in basins close to the sources. The mineralogical and geochemical homogeneity and maturity of the Cretaceous deposits, on the other hand, indicated common sources for all deposits and their deposition in relatively remote basins

    Carbon and hydrogen isotope effects during sorption of organic contaminants on carbonaceous materials

    No full text
    Stable carbon and hydrogen isotopes can be an efficient means to validate biodegradation of organic contaminants in groundwater since it results in an isotopic fractionation. A prerequisite in applying this method in the field is the proof that other processes decreasing the contaminant concentration are conservative with respect to isotope effects. In this paper we show for carbon isotopes of halogenated hydrocarbon compounds trichloroethene (TCE), cis-dichloroethene (c-DCE), vinylchloride (VC) and carbon and hydrogen isotopes of BTEX compounds (benzene, toluene, p-xylene) that no significant fractionation occurs during equilibrium sorption onto activated carbon, lignite coke and lignite. In general, effects were in the range of the reproducibility limit of the analytical instrument (0.5â�° for δ\delta13C, and 8â�° for δ\delta2H). This observation was made for fractions sorbed of less than 5{\%} to more than 95{\%}. Also for rate-limited sorption of TCE onto activated carbon, no significant fractionation in carbon isotopes could be observed. These findings support the assumption that for these classes of compounds, sorption processes in aquifer systems are conservative with respect to isotope effects. {\textcopyright} 2003 Elsevier Science B.V. All rights reserved
    corecore