334 research outputs found

    Accurate Vertical Ionization Energy of Water and Retrieval of True Ultraviolet Photoelectron Spectra of Aqueous Solutions

    Get PDF
    Ultraviolet (UV) photoelectron spectroscopy provides a direct way of measuring valence electronic structure; however, its application to aqueous solutions has been hampered by a lack of quantitative understanding of how inelastic scattering of low-energy (<5 eV) electrons in liquid water distorts the measured electron kinetic energy distributions. Here, we present an efficient and widely applicable method for retrieving true UV photoelectron spectra of aqueous solutions. Our method combines Monte Carlo simulations of electron scattering and spectral inversion, with molecular dynamics simulations of depth profiles of organic solutes in aqueous solution. Its application is demonstrated for both liquid water, and aqueous solutions of phenol and phenolate, which are ubiquitous biologically relevant structural motifs

    Innovations in the forest products industry: the Malaysian experience

    Get PDF
    The forest products industry is an important socioeconomic sector to many developing countries, both in terms of foreign exchange earnings and employment. In the case of Malaysia, the industry has been one of the fastest growing manufacturing sectors in the country, driven primarily by comparative advantages derived from factor inputs. However, with increasing competition from other cheaper producing nations particularly China and Vietnam, the Malaysian forest products industry is forced to transform and move along the value-chain through innovation and value-addition. Although the government has played a pivotal role in providing a broad policy framework to support value-adding and innovative activities, success on the ground has been limited. The creativity environment, which is plagued with by low-wage economy, coupled with limited network between research, market and industrial enterprises have stifled innovation within the industry. The lack of information and the poor quality human capital has also contributed to the limited innovation within the forest products industry in the country. Against this background, most innovation within the industry is confined to the realms of alternative raw materials, with minimal technological and design variations. Although extensive research and development activities are undertaken, the commercialization potential of the research outputs is limited due to being not market-driven. Inevitably, innovation in the forest products sector must be based on market-needs and must be driven through technological and design change in order to ensure long-term competitiveness

    1/m_Q Corrections to the Heavy-to-Light-Vector Transitions in the HQET

    Full text link
    Within the HQET, the heavy to light vector meson transitions are systematically analyzed to the order of 1/m_Q. Besides the four universal functions at the leading order, there are twenty-two independent universal form factors at the order of 1/m_Q. Both the semileptonic decay B->\rho which is relevant to the |V_{ub}| extraction, and the penguin induced decay B -> K^* which is important to new physics discovering, depend on these form factors. Phenomenological implications are discussed.Comment: RevTeX, 9 pages, no figure

    Implementation of the Hierarchical Reference Theory for simple one-component fluids

    Full text link
    Combining renormalization group theoretical ideas with the integral equation approach to fluid structure and thermodynamics, the Hierarchical Reference Theory is known to be successful even in the vicinity of the critical point and for sub-critical temperatures. We here present a software package independent of earlier programs for the application of this theory to simple fluids composed of particles interacting via spherically symmetrical pair potentials, restricting ourselves to hard sphere reference systems. Using the hard-core Yukawa potential with z=1.8/sigma for illustration, we discuss our implementation and the results it yields, paying special attention to the core condition and emphasizing the decoupling assumption's role.Comment: RevTeX, 16 pages, 2 figures. Minor changes, published versio

    On acceleration of Krylov-subspace-based Newton and Arnoldi iterations for incompressible CFD: replacing time steppers and generation of initial guess

    Full text link
    We propose two techniques aimed at improving the convergence rate of steady state and eigenvalue solvers preconditioned by the inverse Stokes operator and realized via time-stepping. First, we suggest a generalization of the Stokes operator so that the resulting preconditioner operator depends on several parameters and whose action preserves zero divergence and boundary conditions. The parameters can be tuned for each problem to speed up the convergence of a Krylov-subspace-based linear algebra solver. This operator can be inverted by the Uzawa-like algorithm, and does not need a time-stepping. Second, we propose to generate an initial guess of steady flow, leading eigenvalue and eigenvector using orthogonal projection on a divergence-free basis satisfying all boundary conditions. The approach, including the two proposed techniques, is illustrated on the solution of the linear stability problem for laterally heated square and cubic cavities

    Computational Modeling for the Activation Cycle of G-proteins by G-protein-coupled Receptors

    Full text link
    In this paper, we survey five different computational modeling methods. For comparison, we use the activation cycle of G-proteins that regulate cellular signaling events downstream of G-protein-coupled receptors (GPCRs) as a driving example. Starting from an existing Ordinary Differential Equations (ODEs) model, we implement the G-protein cycle in the stochastic Pi-calculus using SPiM, as Petri-nets using Cell Illustrator, in the Kappa Language using Cellucidate, and in Bio-PEPA using the Bio-PEPA eclipse plug in. We also provide a high-level notation to abstract away from communication primitives that may be unfamiliar to the average biologist, and we show how to translate high-level programs into stochastic Pi-calculus processes and chemical reactions.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005

    Theoretical description of phase coexistence in model C60

    Full text link
    We have investigated the phase diagram of the Girifalco model of C60 fullerene in the framework provided by the MHNC and the SCOZA liquid state theories, and by a Perturbation Theory (PT), for the free energy of the solid phase. We present an extended assessment of such theories as set against a recent Monte Carlo study of the same model [D. Costa et al, J. Chem. Phys. 118:304 (2003)]. We have compared the theoretical predictions with the corresponding simulation results for several thermodynamic properties. Then we have determined the phase diagram of the model, by using either the SCOZA, or the MHNC, or the PT predictions for one of the coexisting phases, and the simulation data for the other phase, in order to separately ascertain the accuracy of each theory. It turns out that the overall appearance of the phase portrait is reproduced fairly well by all theories, with remarkable accuracy as for the melting line and the solid-vapor equilibrium. The MHNC and SCOZA results for the liquid-vapor coexistence, as well as for the corresponding critical points, are quite accurate. All results are discussed in terms of the basic assumptions underlying each theory. We have selected the MHNC for the fluid and the first-order PT for the solid phase, as the most accurate tools to investigate the phase behavior of the model in terms of purely theoretical approaches. The overall results appear as a robust benchmark for further theoretical investigations on higher order C(n>60) fullerenes, as well as on other fullerene-related materials, whose description can be based on a modelization similar to that adopted in this work.Comment: RevTeX4, 15 pages, 7 figures; submitted to Phys. Rev.

    Recent developments of the Hierarchical Reference Theory of Fluids and its relation to the Renormalization Group

    Full text link
    The Hierarchical Reference Theory (HRT) of fluids is a general framework for the description of phase transitions in microscopic models of classical and quantum statistical physics. The foundations of HRT are briefly reviewed in a self-consistent formulation which includes both the original sharp cut-off procedure and the smooth cut-off implementation, which has been recently investigated. The critical properties of HRT are summarized, together with the behavior of the theory at first order phase transitions. However, the emphasis of this presentation is on the close relationship between HRT and non perturbative renormalization group methods, as well as on recent generalizations of HRT to microscopic models of interest in soft matter and quantum many body physics.Comment: 17 pages, 5 figures. Review paper to appear in Molecular Physic

    Uniform electron gases

    Full text link
    We show that the traditional concept of the uniform electron gas (UEG) --- a homogeneous system of finite density, consisting of an infinite number of electrons in an infinite volume --- is inadequate to model the UEGs that arise in finite systems. We argue that, in general, a UEG is characterized by at least two parameters, \textit{viz.} the usual one-electron density parameter ρ\rho and a new two-electron parameter η\eta. We outline a systematic strategy to determine a new density functional E(ρ,η)E(\rho,\eta) across the spectrum of possible ρ\rho and η\eta values.Comment: 8 pages, 2 figures, 5 table
    corecore