3 research outputs found

    Defense Against Cannibalism: The SdpI Family of Bacterial Immunity/Signal Transduction Proteins

    Get PDF
    The SdpI family consists of putative bacterial toxin immunity and signal transduction proteins. One member of the family in Bacillus subtilis, SdpI, provides immunity to cells from cannibalism in times of nutrient limitation. SdpI family members are transmembrane proteins with 3, 4, 5, 6, 7, 8, or 12 putative transmembrane α-helical segments (TMSs). These varied topologies appear to be genuine rather than artifacts due to sequencing or annotation errors. The basic and most frequently occurring element of the SdpI family has 6 TMSs. Homologues of all topological types were aligned to determine the homologous TMSs and loop regions, and the positive-inside rule was used to determine sidedness. The two most conserved motifs were identified between TMSs 1 and 2 and TMSs 4 and 5 of the 6 TMS proteins. These showed significant sequence similarity, leading us to suggest that the primordial precursor of these proteins was a 3 TMS–encoding genetic element that underwent intragenic duplication. Various deletional and fusional events, as well as intragenic duplications and inversions, may have yielded SdpI homologues with topologies of varying numbers and positions of TMSs. We propose a specific evolutionary pathway that could have given rise to these distantly related bacterial immunity proteins. We further show that genes encoding SdpI homologues often appear in operons with genes for homologues of SdpR, SdpI’s autorepressor. Our analyses allow us to propose structure–function relationships that may be applicable to most family members

    Defense against cannibalism : the SdpI family of bacterial immunity/signal transduction proteins

    No full text
    The SdpI family consists of putative bacterial toxin immunity and signal transduction proteins. One member of the family in Bacillus subtilis, SdpI, provides immunity to cells from cannibalism in times of nutrient limitation. SdpI family members are transmembrane proteins with 3, 4, 5, 6, 7, 8 or 12 putative transmembrane [alpha]-helical segments (TMSs). These varied topologies appear to be genuine rather than artifactual due to sequencing or annotation errors. Bioinformatic methods were used to show that the basic and most frequently occurring element of the SdpI family has 6 TMSs. Homologues of all topological types were aligned to determine the homologous TMSs and loop regions, and the Positive-Inside Rule was used to determine sidedness. The two most conserved motifs were identified between TMSs 1 and 2 and TMSs 4 and 5 of the 6 TMS proteins. These showed significant sequence similarity, leading us to suggest that the primordial precursor of these proteins was a 3 TMS-encoding genetic element that underwent intragenic duplication. Various fusional, insertional and deletion events, as well as intragenic duplications and inversions, are proposed to have yielded SdpI homologues with topologies of varying numbers of TMSs. We propose a specific evolutionary pathway that could have given rise to these distantly related bacterial immunity proteins. Our analyses allow us to propose structure-function relationships that may be applicable to most or all family member

    Genomische VariabilitĂ€t in der Kontrolle des SignalmolekĂŒles c-di-GMP und dessen Rolle in PathogenizitĂ€t und Biofilmbildung von kommensalen und pathogenen Escherichia coli

    No full text
    Cyclic-di-GMP is a second messenger molecule found ubiquitously throughout the bacterial kingdom. It is the driving force behind the regulation of processes including biofilm formation, bacterial adherence, cell-cell signaling, differentiation, motility, and virulence. Its cellular level is modulated by two sets of proteins: diguanylate cyclases (DGCs) synthesize and phosphodiesterases (PDEs) degrade c-di-GMP. DGCs are characterized by the presence of the GGDEF domain and PDEs are identified by the EAL domain. In the K-12 strains Escherichia coli W3110 and MG1655, 29 different GGDEF/EAL domain- containing proteins have been identified. However, little is known about how that list may differ between strains of E. coli, particularly comparing pathogenic and commensal strains. This study presents a systematic comparison of the complement of putative DGC and PDE proteins as well as genes associated with biofilm formation, among 61 strains of E. coli including enterohemorrhagic (EHEC), uropathogenic (UPEC), enteroaggregative (EAEC), enteropathogenic (EPEC) and enterotoxigenic (ETEC) as well as commensal strains. It has been found that some groups of pathogenic E. coli possess potentially novel DGC and PDE genes, whereas other common DGCs and PDEs are absent. 8 GGDEF/EAL domain-containing genes were found to be universally conserved among the 61 E. coli strains analyzed. Four novel putative PDEs (PdeT, PdeX, PdeY and PdeZ) and two novel DGCs (DgcX and DgcY) were discovered. A large number of strains, including E. coli K-12 strains, contain a large 5’ deletion in the DGC gene yneF, implying that this gene is not expressed in these strains. Two variants of the PDE gene yahA have been detected, one of which contains an upstream insertion of an aidA-I adhesin- like gene resulting in the alteration of the 5’ end encoding the LuxR-like N-terminal domain in the DNA-binding motif. The ycgG gene was also found in two variants, one full version encoding its transmembrane domain containing a CSS motif and a shortened version encoding only the EAL domain uncoupled from the transmembrane sensory domain. csg genes were almost universally conserved among the analyzed strains and encode proteins for amyloid curli fiber production and export and the biofilm regulator CsgD, essential for the production of two biofilm matrix components: curli fibers and cellulose. The novel dgcX gene has been found in a total of nine strains and was conserved among all EAECs of the O104:H4 serotype: 55989, HUSEC041, LB226692, 2011C-3493, 2009EL-2050 and 2009EL-2071. The three additional strains containing the dgcX gene were two ETECs: E24377A and ETEC H10407, and one commensal strain SE11. In 2011 nearly 4000 persons in Germany were infected by a Shiga toxin (Stx)-producing Escherichia coli O104:H4, with more than 20% of patients developing hemolytic uremic syndrome (HUS). The outbreak strain is genetically most similar to an EAEC but has acquired a Stx carrying phage from EHEC (Mellmann et al., 2011) and contains the novel dgcX gene. This outbreak led to the DgcX protein being chosen for further characterization of regulation and function as well as focus on the outbreak strain and its special characteristics with respect to DGC/PDE genes and genes associated with biofilm formation. DgcX has been found to be the most highly expressed DGC of all of the others studied so far in E. coli. It is expressed at both 28°C and 37°C and throughout the E. coli’s growth cycle. The outbreak strain was shown to produce thick biofilms (Al Safadi et al., 2012) and this work shows that it contains two novel DGCs (one of them highly active and atypical of many E. coli), expressing the biofilm regulator CsgD and amyloid curli fibers at 37°C but is cellulose-negative. The outbreak strains high incidence of HUS and adherence may be due to its high production of c-di-GMP and curli fiber, while at the same time not being able to produce cellulose. Curli fibers cause a strong proinflammatory response (TĂŒkel et al., 2005, 2009) while cellulose has been shown to counteract this. Thus the strong proinflammatory response triggered by an infection by the outbreak strain may be the result of high curli production without cellulose and may facilitate the systemic absorption of the shiga-toxin by the body and transport through the bloodstream to the kidneys, which can lead to hemorrhagic diarrhea and HUS. This study will contribute to elucidating the complex regulatory network of c-di-GMP as well as shed light upon which DGCs and PDEs may be indispensable for c-di-GMP regulation in E. coli and which may be linked to virulence. It brings attention to the outbreak strain and its unique ensemble of properties that may be linked to its increased virulence.Zyklisches di-Guanosinemonophosphat (c-di-GMP) ist ein sekundĂ€rer Botenstoff, der im gesamten Bakterienreich anzutreffen ist. Er ist die treibende Kraft hinter der Regulation verschiedener Prozesse, einschließlich Biofilmbildung, bakterieller AdhĂ€renz, Zell-Zell-Kommunikation, Differenzierung, MotilitĂ€t und Virulenz. Der zellulĂ€re c-di-GMP Spiegel wird durch zwei SĂ€tze von Proteinen moduliert: Diguanylate Cyclasen (DGCs) synthetisieren und Phosphodiesterasen (PDEs) degradieren c-di-GMP. DGCs werden durch die Anwesenheit der GGDEF- und PDEs durch die der EAL-DomĂ€ne identifiziert. In den K-12 StĂ€mmen von Escherichia coli W3110 und MG1655 wurden 29 verschiedene Gene fĂŒr GGDEF/EAL- DomĂ€nen enthaltende Proteine annotiert, allerdings ist nur wenig darĂŒber bekannt wie sich diese Liste zwischen pathogenen und kommensalen E. coli StĂ€mmen unterscheidet. Diese Studie prĂ€sentiert einen systematischen Vergleich zwischen den prognostizierten Genen in insgesamt 61 StĂ€mmen von E. Coli, einschließlich enterohĂ€morrhagischen (EHEC), uropathogenen (UPEC), enteroaggregative (EAG), enteropathogenen (EPEC) und enterotoxigene (ETEC) sowie kommensalen StĂ€mmen, die fĂŒr DGC und PDE Proteine sowie fĂŒr Proteine codieren, die mit der Biofilmbildung assoziiert werden. Es wurde gezeigt, dass einige Gruppen von pathogenen E. coli potentiell neuartige DGC und PDE-Gene besitzen, wĂ€hrend andere DGCs und PDEs tatsĂ€chlich fehlen. So wurden sechs neue mutmaßliche Gene entdeckt, vier fĂŒr PDEs (PdeT, PdeX, PdeY und PdeZ) und zwei fĂŒr DGCs (DgcX und DgcY). Dagegen enthalten eine große Anzahl an StĂ€mmen, einschließlich der E. coli K-12 StĂ€mme, eine lange 5‘ Deletion im DGC Gen yneF, was impliziert, dass dieses Gen in diesen StĂ€mmen nicht exprimiert wird. Die allgemeine „Grundausttattung“ umfasst 8 Gene, die fĂŒr GGDEF- und/oder EAL- DomĂ€nenproteine codieren und unter allen hier untersuchten 61 E. coli StĂ€mmen konserviert sind. Desweiteren wurden jeweils zwei Varianten der PDE Gene yahA und ycgG gefunden. Bei ersterem gibt es aufgrund einer stromaufwĂ€rts vorliegenden Insertion eines Gens fĂŒr ein AidA-I-AdhĂ€sin-Ă€hnliches Protein eine VerĂ€nderung der 5’-Sequenz, welche fĂŒr das LuxR-Ă€hnliche N-terminale DNA- Bindemotif in YahA codiert. Im Falle von ycgG findet man eine Vollversion inklusive der fĂŒr die TransmembrandomĂ€ne mit CSS-Motif codierenden Sequenzen sowie eine verkĂŒrzte Version, die lediglich fĂŒr die cytoplasmatische EAL DomĂ€ne codiert. Die csg Gene sind fast universell in allen fĂŒr diese Studie herangezogenen StĂ€mmen konserviert und codieren fĂŒr Proteine, die an der Produktion und Export der amyloiden Curlifasern beteiligt sind, darunter auch der Biofilmregulator CsgD, der ebenfalls fĂŒr die Produktion der Biofilmmatrixkomponente Cellulose essentiell ist. Im Jahr 2011 wurden fast 4000 Personen in Deutschland von einem Shiga-Toxin (Stx) produzierenden Escherichia coli O104:H4 infiziert, wobei mehr als 20% der Patienten hĂ€molytisch-urĂ€misches Syndrom (HUS) entwickelten. Der Ausbruchsstamm ist einem EAEC genetisch am Ă€hnlichsten, hat aber einen das Stx Gen tragenden Phagen aus EHEC erworben (Mellmann et al., 2011). Er enthĂ€lt außerdem das fĂŒr die neuartige Diguanylatcyclase DgcX codierende Gen, welches in allen sechs untersuchten EAEC O104:H4 konserviert sowie in zwei ETECs, E24377A und ETEC H10407, und dem kommensalen Stamm SE11 zu finden ist. Aufgrund diese Ausbruchs wurde das DgcX Protein zur weiteren Charakterisierung der Regulation und Funktion ausgewĂ€hlt sowie der Fokus auf den Ausbruchsstamm und seine besonderen Eigenschaften bezĂŒglich DGC/PDE-Gene und mit Biofilm assoziierten Gene gesetzt. DgcX wurde als die am höchsten exprimierte DGC von allen anderen bisher in E. coli untersuchten identifiziert. Es wird sowohl bei 28°C als auch 37°C exprimiert, und dies wĂ€hrend des gesamten Wachstumszyklus in E. coli. Der Ausbruchsstamm produziert besonders starke Biofilme (Al Safadi et al., 2012) und diese Arbeit zeigt, dass er mit zwei neuartigen DGCs ausgestattet, jedoch Cellulose-negativ ist. Der Ausbruchsstamm exprimiert den Biofilmregulator CsgD und amyloide Curlifasern bei 37°C. Die hohe Inzidenz von HUS und Adherenz des Ausbruchsstammes könnte auf seine hohen c-di-GMP- und starken Curlifasersynthese bei gleichzeitiger Defizienz in der Zelluloseproduktion zurĂŒckzufĂŒhren sein. Curli Fasern bewirken eine starke proinflammatorische Reaktion (TĂŒkel et al., 2005, 2009), wĂ€hrend Zellulose dieser entgegenwirkt. So ist die starke proinflammatorische Reaktion ausgelöst durch eine Infektion mit dem Ausbruchsstamm vermutlich das Ergebnis der hohen Curli Produktion ohne Zellulose und könnte die systemische Absorption des Shiga-Toxins vom Körper und den Transport durch den Blutstrom zu den Nieren ermöglichen, was schließlich zu hĂ€morrhagischen Durchfall und HUS fĂŒhrt. Diese Studie trĂ€gt zu der AufklĂ€rung des komplexen Regulationsnetzwerk von c-di-GMP bei und schafft einen Einblick welche DGCs und PDEs fĂŒr c-di-GMP Regulation in E. coli unverzichtbar sein könnten. Es lenkt die Aufmerksamkeit auf den Ausbruchsstamm und sein einzigartiges Ensemble von Eigenschaften, die vermutlich in Zusammenhang mit seiner erhöhten Virulenz stehen
    corecore