20 research outputs found

    Characterisation of plant-parasitic nematodes

    No full text
    During 2016-2020, about 120 soil samples were collected from the rhizosphere of grapes in different vineyards of the Central and Southern regions of Crimea. Two morphologically close nematode species, Helicotylenchus digonicus and Helicotylenchus vulgaris, were found at all sampling sites in the Yalta, Sevastopol, Simferopol and Bakhchisarai districts. Morphologically, these species could be differentiated by the stylet length and the shape of tails. In addition, these species have significant differences in sequences of the D2-D3 expansion segments of the 28S rRNA

    Multisensory Systems Based on Perfluorosulfonic Acid Membranes Modified with Polyaniline and PEDOT for Multicomponent Analysis of Sulfacetamide Pharmaceuticals

    No full text
    The degradation of sulfacetamide with the formation of sulfanilamide leads to a deterioration in the quality of pharmaceuticals. In this work, potentiometric sensors for the simultaneous determination of sulfanilamide, sulfacetamide and inorganic ions, and for assessing the degradation of pharmaceuticals were developed. A multisensory approach was used for this purpose. The sensor cross-sensitivity to related analytes was achieved using perfluorosulfonic acid membranes with poly(3,4-ethylenedioxythiophene) or polyaniline as dopants. The composite membranes were prepared by oxidative polymerization and characterized using FTIR and UV-Vis spectroscopy, and SEM. The influence of the preparation procedure and the dopant concentration on the membrane hydrophilicity, ion-exchange capacity, water uptake, and transport properties was investigated. The characteristics of the potentiometric sensors in aqueous solutions containing sulfanilamide, sulfacetamide and alkali metals ions in a wide pH range were established. The introduction of proton-acceptor groups and π-conjugated moieties into the perfluorosulfonic acid membranes increased the sensor sensitivity to organic analytes. The relative errors of sulfacetamide and sulfanilamide determination in the UV-degraded eye drops were 1.2 to 1.4 and 1.7 to 4%, respectively, at relative standard deviation of 6 to 9%

    Potentiometric Sensor Arrays Based on Hybrid PFSA/CNTs Membranes for the Analysis of UV-Degraded Drugs

    No full text
    The degradation of drugs is a substantial problem since it affects the safety and effectiveness of pharmaceutical products, as well as their influence on the environment. A novel system of three potentiometric cross-sensitive sensors (using the Donnan potential (DP) as an analytical signal) and a reference electrode was developed for the analysis of UV-degraded sulfacetamide drugs. The membranes for DP-sensors were prepared by a casting procedure from a dispersion of perfluorosulfonic acid (PFSA) polymer, containing carbon nanotubes (CNTs), whose surface was preliminarily modified with carboxyl, sulfonic acid, or (3-aminopropyl)trimethoxysilanol groups. A correlation between the sorption and transport properties of the hybrid membranes and cross-sensitivity of the DP-sensor to sulfacetamide, its degradation product, and inorganic ions was revealed. The analysis of the UV-degraded sulfacetamide drugs using the multisensory system based on hybrid membranes with optimized properties did not require a pre-separation of the components. The limits of detection of sulfacetamide, sulfanilamide, and sodium were 1.8 × 10−7, 5.8 × 10−7, and 1.8 × 10−7 M. The relative errors of the determination of the components of the UV-degraded sulfacetamide drugs were 2–3% (at 6–8% relative standard deviation). PFSA/CNT hybrid materials provided the stable work of the sensors for at least one year

    Characterization of Enrichment Cultures of Anammox, Nitrifying and Denitrifying Bacteria Obtained from a Cold, Heavily Nitrogen-Polluted Aquifer

    No full text
    Anammox bacteria related to Candidatus Scalindua were recently discovered in a cold (7.5 °C) aquifer near sludge repositories containing solid wastes of uranium and processed polymetallic concentrate. Groundwater has a very high level of nitrate and ammonia pollution (up to 10 and 0.5 g/L, respectively) and a very low content of organic carbon (2.5 mg/L). To assess the potential for bioremediation of polluted groundwater in situ, enrichment cultures of anammox, nitrifying, and denitrifying bacteria were obtained and analyzed. Fed-batch enrichment of anammox bacteria was not successful. Stable removal of ammonium and nitrite (up to 100%) was achieved in a continuous-flow reactor packed with a nonwoven fabric at 15 °C, and enrichment in anammox bacteria was confirmed by FISH and qPCR assays. The relatively low total N removal efficiency (up to 55%) was due to nonstoichiometric nitrate buildup. This phenomenon can be explained by a shift in the metabolism of anammox bacteria towards the production of more nitrates and less N2 at low temperatures compared to the canonical stoichiometry. In addition, the too high an estimate of specific anammox activity suggests that N cycle microbial groups other than anammox bacteria may have contributed significantly to N removal. Stable nitrite production was observed in the denitrifying enrichment culture, while no “conventional” nitrifiers were found in the corresponding enrichment cultures. Xanthomonadaceae was a common taxon for all microbial communities, indicating its exclusive role in this ecosystem. This study opens up new knowledge about the metabolic capabilities of N cycle bacteria and potential approaches for sustainable bioremediation of heavily N-polluted cold ecosystems

    Multisensory Systems Based on Perfluorosulfonic Acid Membranes Modified with Functionalized CNTs for Determination of Sulfamethoxazole and Trimethoprim in Pharmaceuticals

    No full text
    Sulfamethoxazole and trimethoprim are synthetic bacteriostatic drugs. A potentiometric multisensory system for the analysis of sulfamethoxazole and trimethoprim combination drugs was developed. Perfluorosulfonic acid membranes containing functionalized CNTs were used as the sensor materials. The CNTs’ surface was modified by carboxyl, sulfonic acid, or (3-aminopropyl)trimethoxysilanol groups. The influence of the CNT concentration and the properties of their surface, as well as preliminary ultrasonic treatment of the polymer and CNT solution before the casting of hybrid membranes, on their ion-exchange capacity, water uptake, and transport properties was revealed. Cross-sensitivity of the sensors to the analytes was achieved due to ion exchange and hydrophobic interactions with hybrid membranes. An array of cross-sensitive sensors based on the membranes containing 1.0 wt% of CNTs with sulfonic acid or (3-aminopropyl)trimethoxysilanol groups enabled us to provide the simultaneous determination of sulfamethoxazole and trimethoprim in aqueous solutions with a concentration ranging from 1.0 × 10−5 to 1.0 × 10−3 M (pH 4.53–8.31). The detection limits of sulfamethoxazole and trimethoprim were 3.5 × 10−7 and 1.3 × 10−7 M. The relative errors of sulfamethoxazole and trimethoprim determination in the combination drug as compared with the content declared by the manufacturer were 4% (at 6% RSD) and 5% (at 7% RSD)

    Thermosulfuriphilus ammonigenes gen. nov., sp. nov., a Thermophilic, ChemolithoautotrOphic Bacterium Capable of Respiratory Ammonification of Nitrate with Elemental Sulfur

    No full text
    An extremely thermophilic, anaerobic, chemolithoautotrophic bacterium (strain ST65T) was isolated from a deep-sea hydrothermal vent chimney located on the Eastern Lau Spreading Centre in the south-western Pacific Ocean, at a depth of 1870 m. Cells of strain ST65T were non-motile straight or slightly curved short rods, 0.5–0.6 ”m in diameter and 0.8–1.5 ”m in length. The temperature range for growth was 47–75 °C, with an optimum at 65 °C. The pH range for growth was 5.5–7.5, with an optimum at pH 6.5. Growth of strain ST65T was observed at NaCl concentrations ranging from 1.5 to 4.5 % (w/v), with an optimum at 2.0–2.5 %. Strain ST65T grew anaerobically with inorganic carbon as a carbon source and with elemental sulfur as an electron donor and nitrate as an electron acceptor producing sulfate and ammonium. It was also able to grow by disproportionation of elemental sulfur, thiosulfate and sulfite. Sulfate was not utilized as an electron acceptor. Analysis of the 16S rRNA gene sequence revealed that the isolate belongs to a deep lineage in the phylum Thermodesulfobacteria . On the basis of its physiological properties and results of phylogenetic analyses, it is proposed that the isolate represents a novel species of a new genus, Thermosulfuriphilus ammonigenes gen. nov., sp. nov. ST65T (=DSM 102941T=VKM B-2855T) is the type strain of the type species

    Thermosipho activus sp. nov., a thermophilic, anaerobic, hydrolytic bacterium isolated from a deep-sea sample.

    No full text
    International audienceA novel obligately anaerobic, extremely thermophilic, organotrophic bacterium, strain Rift-s3(T), was isolated from a deep-sea sample containing Riftia pachyptila sheath from Guaymas Basin, Gulf of California. Cells of the novel isolate were rods, 0.3-0.8 ”m in width and 1.5-10 ”m in length, surrounded by a sheath-like structure (toga). Strain Rift-s3(T) grew at temperatures ranging from 44 to 75 °C, at pH 5.5 to 8.0, and with NaCl concentrations of 3 to 60 g l(-1). Under optimum conditions (65 °C, pH 6.0, NaCl 25 g l(-1)), the doubling time was 30 min. The isolate was able to ferment mono-, oligo- and polysaccharides including cellulose, chitin, xylan and pectin, and proteins including ÎČ-keratins, casein and gelatin. Acetate, hydrogen and carbon dioxide were the main products of glucose fermentation. The G+C content of the DNA was 30 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed the affiliation of strain Rift-s3(T) with the genus Thermosipho, with Thermosipho atlanticus Ob7(T) as the closest relative (96.5 % 16S rRNA gene sequence similarity). Based on the phylogenetic analysis and physiological properties of the novel isolate we propose a novel species of the genus Thermosipho, Thermosipho activus sp. nov., with Rift-s3(T) ( = DSM 26467(T) = VKM B-2803(T)) as the type strain
    corecore