1,539 research outputs found

    X-ray Signatures of Circumnuclear Gas in AGN

    Full text link
    X-ray spectra of AGN are complex. X-ray absorption and emission features trace gas covering a wide range of column densities and ionization states. High resolution spectra show the absorbing gas to be outflowing, perhaps in the form of an accretion disk wind. The absorbing complex shapes the form of the X-ray spectrum while X-ray reverberation and absorption changes explain the spectral and timing behaviour of AGN. We discuss recent progress, highlighting some new results and reviewing the implications that can be drawn from the data.Comment: Proceedings of the conference "Suzaku 2011, Exploring the X-ray Universe: Suzaku and Beyond

    The Global Implications of the Hard X-ray Excess in Type 1 AGN

    Full text link
    Recent evidence for a strong 'hard excess' of flux at energies > 20 keV in some Suzaku observations of type 1 Active Galactic Nuclei (AGN) has motivated an exploratory study of the phenomenon in the local type 1 AGN population. We have selected all type 1 AGN in the Swift Burst Alert Telescope (BAT) 58-month catalog and cross-correlated them with the holdings of the Suzaku public archive. We find the hard excess phenomenon to be a ubiquitous property of type 1 AGN. Taken together, the spectral hardness and equivalent width of Fe K alpha emission are consistent with reprocessing by an ensemble of Compton-thick clouds that partially cover the continuum source. In the context of such a model, ~ 80 % of the sample has a hardness ratio consistent with > 50% covering of the continuum by low-ionization, Compton-thick gas. More detailed study of the three hardest X-ray spectra in our sample reveal a sharp Fe K absorption edge at ~ 7 keV in each of them, indicating that blurred reflection is not responsible for the very hard spectral forms. Simple considerations place the distribution of Compton-thick clouds at or within the optical broad line region.Comment: Accepted for publication in Ap

    Wikipedia as Distributed Knowledge Laboratory: The Case of Neoliberalism

    Get PDF
    Merit, Expertise and Measuremen

    An S2 Fluorescence Model for Interpreting High-Resolution Cometary Spectra. I. Model Description and Initial Results

    Full text link
    A new versatile model providing S2 fluorescence spectrum as a function of time is developed with the aim of interpreting high resolution cometary spectra. For the S2 molecule, it is important to take into account both chemical and dynamic processes because S2 has a short lifetime and is confined in the inner coma where these processes are most important. The combination of the fluorescence model with a global coma model allows for the comparison with observations of column densities taken through an aperture and for the analysis of S2 fluorescence in different parts of the coma. Moreover, the model includes the rotational structure of the molecule. Such a model is needed for interpreting recent high spectral resolution observations of cometary S2. A systematic study of the vibrational-rotational spectrum of S2 is undertaken, including relevant effects, such as non-equilibrium state superposition and the number density profile within the coma due to dynamics and chemistry, to investigate the importance of the above effects on the scale length and abundance of S2 in comets.Comment: 20 pages, 7 figure
    • …
    corecore