51 research outputs found

    How Does Chloroplast Protect Chlorophyll Against Excessive Light?

    Get PDF
    Chlorophylls (Chls) are the most abundant plant pigments on Earth. Chls are located in the membrane of thylakoids where they constitute the two photosystems (PSII and PSI) of terrestrial plants, responsible for both light absorption and transduction of chemical energy via photosynthesis. The high efficiency of photosystems in terms of light absorption correlates with the need to protect themselves against absorption of excess light, a process that leads to the so-called photoinhibition. Dynamic photoinhibition consists of the downregulation of photosynthesis quantum yield and a series of photo-protective mechanisms aimed to reduce the amount of light reaching the chloroplast and/or to counteract the production of reactive oxygen species (ROS) that can be grouped in: (i) the first line of chloroplast defence: non-photochemical quenching (NPQ), that is, the dissipation of excess excitation light as heat, a process that takes place in the external antennae of PSII and in which other pigments, that is carotenoids, are directly involved; (ii) the second line of defence: enzymatic antioxidant and antioxidant molecules that scavenge the generated ROS; alternative electron transport (cyclic electron transport, pseudo-cyclic electron flow, chlororespiration and water-water cycle) can efficiently prevent the over-reduction of electron flow, and reduced ferredoxin (Fd) plays a key role in this context

    UV radiation promotes flavonoid biosynthesis, while negatively affecting the biosynthesis and de-epoxidation of xanthophylls: consequence for photoprotection?

    Get PDF
    There is evidence that UV radiation may detrimentally affect the biosynthesis of carotenoids, particularly de-epoxided xanthophylls, while strongly promoting phenylpropanoid, particularly flavonoid biosynthesis in a range of taxa. Here we tested the hypothesis that mesophyll flavonoids might protect chloroplasts from UV-induced photo-oxidative damage, by partially compensating for the UV-induced depression of xanthophyll biosynthesis. To test this hypothesis we grew two members of the Oleaceae family, Ligustrum vulgare L. and Phillyrea latifolia L., under either partial shading or fully exposed to sunlight, in the presence or in the absence of UV radiation. The examined species, which display very similar flavonoid composition, largely differ in their ability to limit the transmission of UV and visible light through the leaf and, hence, in the accumulation of flavonoids in mesophyll cells. We conducted measurements of photosynthesis, chlorophyll a fluorescence kinetics, the concentrations of individual carotenoids and phenylpropanoids at the level of whole-leaf, as well as the content of epidermal flavonoids. We also performed multispectral fluorescence micro-imaging to unveil the intra-cellular distribution of flavonoids in mesophyll cells. UV radiation decreased the concentration of carotenoids, particularly of xanthophylls, while greatly promoting the accumulation of flavonoids in palisade parenchyma cells. These effects were much greater in L. vulgare than in P. latifolia. UV radiation significantly inhibited the de-epoxidation of xanthophyll cycle pigments, while enhancing the concentration of luteolin, and particularly of quercetin glycosides. Flavonoids accumulated in the vacuole and the chloroplasts in palisade cells proximal to the adaxial epidermis. We hypothesize that flavonoids might complement the photo-protective functions of xanthophylls in the chloroplasts of mesophyll cells exposed to the greatest doses of UV radiation. However, UV radiation might result in adaxial mesophyll cells being less effective in dissipating the excess of radiant energy, e.g., by decreasing their capacity of thermal dissipation of excess visible light in the chloroplast

    Dissecting Adaptation Mechanisms to Contrasting Solar Irradiance in the Mediterranean Shrub Cistus incanus

    Get PDF
    Molecular mechanisms that are the base of the strategies adopted by Mediterranean plants to cope with the challenges imposed by limited or excessive solar radiation during the summer season have received limited attention. In our study, conducted on C. incanus plants growing in the shade or in full sunlight, we performed measurements of relevant physiological traits, such as leaf water potential, gas exchange and PSII photochemistry, RNA-Seq with de-novo assembly, and the analysis of differentially expressed genes. We also identified and quantified photosynthetic pigments, abscisic acid, and flavonoids. Here, we show major mechanisms regulating light perception and signaling which, in turn, sustain the shade avoidance syndrome displayed by the ‘sun loving’ C. incanus. We offer clear evidence of the detrimental effects of excessive light on both the assembly and the stability of PSII, and the activation of a suite of both repair and effective antioxidant mechanisms in sun-adapted leaves. For instance, our study supports the view of major antioxidant functions of zeaxanthin in sunny plants concomitantly challenged by severe drought stress. Finally, our study confirms the multiple functions served by flavonoids, both flavonols and flavanols, in the adaptive mechanisms of plants to the environmental pressures associated to Mediterranean climate

    Metabolic plasticity in the hygrophyte Moringa oleifera exposed to water stress

    Get PDF
    Over the past decades, introduction of many fast-growing hygrophilic, and economically valuable plants into xeric environments has occurred. However, production and even survival of these species may be threatened by harsh climatic conditions unless an effective physiological and metabolic plasticity is available. Moringa oleifera Lam., a multipurpose tree originating from humid sub-tropical regions of India, is widely cultivated in many arid countries because of its multiple uses. We tested whether M. oleifera can adjust primary and secondary metabolism to efficiently cope with increasing water stress. It is shown that M. oleifera possesses an effective isohydric behavior. Water stress induced a quick and strong stomatal closure, driven by abscisic acid (ABA) accumulation, and leading to photosynthesis inhibition with consequent negative effects on biomass production. However, photochemistry was not impaired and maximal fluorescence and saturating photosynthesis remained unaffected in stressed leaves. We report for the first time that M. oleifera produces isoprene, and show that isoprene emission increased three-fold during stress progression. It is proposed that higher isoprene biosynthesis helps leaves cope with water stress through its antioxidant or membrane stabilizing action, and also indicates a general MEP (methylerythritol 4-phosphate) pathway activation that further helps protect photosynthesis under water stress. Increased concentrations of antioxidant flavonoids were also observed in water stressed leaves, and probably cooperate in limiting irreversible effects of the stress in M. oleifera leaves. The observed metabolic and phenotypic plasticity may facilitate the establishment of M. oleifera in xeric environments, sustaining the economic and environmental value of this plant

    Isoprene Responses and Functions in Plants Challenged by Environmental Pressures Associated to Climate Change

    Get PDF
    The functional reasons for isoprene emission are still a matter of hot debate. It was hypothesized that isoprene biosynthesis evolved as an ancestral mechanism in plants adapted to high water availability, to cope with transient and recurrent oxidative stresses during their water-to-land transition. There is a tight association between isoprene emission and species hygrophily, suggesting that isoprene emission may be a favorable trait to cope with occasional exposure to stresses in mesic environments. The suite of morpho-anatomical traits does not allow a conservative water use in hygrophilic mesophytes challenged by the environmental pressures imposed or exacerbated by drought and heat stress. There is evidence that in stressed plants the biosynthesis of isoprene is uncoupled from photosynthesis. Because the biosynthesis of isoprene is costly, the great investment of carbon and energy into isoprene must have relevant functional reasons. Isoprene is effective in preserving the integrity of thylakoid membranes, not only through direct interaction with their lipid acyl chains, but also by up-regulating proteins associated with photosynthetic complexes and enhancing the biosynthesis of relevant membrane components, such as mono- and di-galactosyl-diacyl glycerols and unsaturated fatty acids. Isoprene may additionally protect photosynthetic membranes by scavenging reactive oxygen species. Here we explore the mode of actions and the potential significance of isoprene in the response of hygrophilic plants when challenged by severe stress conditions associated to rapid climate change in temperate climates, with special emphasis to the concomitant effect of drought and heat. We suggest that isoprene emission may be not a good estimate for its biosynthesis and concentration in severely droughted leaves, being the internal concentration of isoprene the important trait for stress protection

    Beyond Photoprotection: The Multifarious Roles of Flavonoids in Plant Terrestrialization

    No full text
    Plants evolved an impressive arsenal of multifunctional specialized metabolites to cope with the novel environmental pressures imposed by the terrestrial habitat when moving from water. Here we examine the multifarious roles of flavonoids in plant terrestrialization. We reason on the environmental drivers, other than the increase in UV-B radiation, that were mostly responsible for the rise of flavonoid metabolism and how flavonoids helped plants in land conquest. We are reasonably based on a nutrient-deficiency hypothesis for the replacement of mycosporine-like amino acids, typical of streptophytic algae, with the flavonoid metabolism during the water-to-land transition. We suggest that flavonoids modulated auxin transport and signaling and promoted the symbiosis between plants and fungi (e.g., arbuscular mycorrhizal, AM), a central event for the conquest of land by plants. AM improved the ability of early plants to take up nutrients and water from highly impoverished soils. We offer evidence that flavonoids equipped early land plants with highly versatile “defense compounds”, essential for the new set of abiotic and biotic stressors imposed by the terrestrial environment. We conclude that flavonoids have been multifunctional since the appearance of plants on land, not only acting as UV filters but especially improving both nutrient acquisition and biotic stress defense

    Isoprenoids and phenylpropanoids are key components of the antioxidant defense system of plants facing severe excess light stress

    No full text
    Plants face excess light stress on daily as well as on seasonal basis. The excess of excitation energy on cellular organelles prone to reactive oxygen species (ROS) generation is further enhanced when plants growing in full sun concurrently experience drought and heat stress. These are the very conditions that promote the biosynthesis of a wide range of secondary metabolites. Plants display a highly integrated arsenal of ROS-detoxifying agents to keep ROS concentration under control for efficient signalling, while avoiding cell death. There is evidence that primary antioxidants, i.e., antioxidant enzymes and low molecular-weight antioxidants, such as ascorbic acid and glutathione, are depleted under a severe excess of radiant energy. Here we discuss about how relevant secondary metabolites, namely isoprene, carotenoids, and flavonoids may complement the function of primary antioxidants to avoid irreversible oxidative damage, when plants experience intense, even transient stress events. We offer evidence of how plants orchestrate daily the antioxidant machinery, when challenged against multiple environmental stresses. It is indeed conceivable that daily variations in sunlight irradiance and air temperature may greatly alter the effectiveness of primary and secondary ROS-detoxifying agents. Finally, we discuss about the possible inter-relation between isoprenoid and flavonoid metabolism in plants facing high light coupled with drought and heat stress, as a consequence of severe stress-induced redox imbalance

    Flavonoids as Antioxidants and Developmental Regulators: Relative Significance in Plants and Humans

    Get PDF
    Abstract: Phenylpropanoids, particularly flavonoids have been recently suggested as playing primary antioxidant functions in the responses of plants to a wide range of abiotic stresses. Furthermore, flavonoids are effective endogenous regulators of auxin movement, thus behaving as developmental regulators. Flavonoids are capable of controlling the development of individual organs and the whole-plant; and, hence, to contribute to stress-induced morphogenic responses of plants. The significance of flavonoids as scavengers of reactive oxygen species (ROS) in humans has been recently questioned, based on the observation that the flavonoid concentration in plasma and most tissues is too low to effectively reduce ROS. Instead, flavonoids may play key roles as signaling molecules in mammals, through their ability to interact with a wide range of protein kinases, including mitogen-activated protein kinases (MAPK), that supersede key steps of cell growth and differentiation. Here we discuss about the relative significance of flavonoids as reducing agents and signaling molecules in plants and humans. We show that structural features conferring ROS-scavenger ability to flavonoids are also required t

    Modulation of Phytohormone Signaling: A Primary Function of Flavonoids in Plant–Environment Interactions

    No full text
    The old observation that plants preferentially synthesize flavonoids with respect to the wide range of phenylpropanoid structures when exposed to high doses of UV-B radiation has supported the view that flavonoids are primarily involved in absorbing the shortest solar wavelengths in photoprotection. However, there is compelling evidence that the biosynthesis of flavonoids is similarly upregulated in response to high photosynthetically active radiation in the presence or in the absence of UV-radiation, as well as in response to excess metal ions and photosynthetic redox unbalance. This supports the hypothesis that flavonoids may play prominent roles as scavengers of reactive oxygen species (ROS) generated by light excess. These ‘antioxidant’ functions of flavonoids appears robust, as maintained between different life kingdoms, e.g., plants and animals. The ability of flavonoids to buffer stress-induced large alterations in ROS homeostasis and, hence, to modulate the ROS-signaling cascade, is at the base of well-known functions of flavonoids as developmental regulators in both plants and animals. There is both long and very recent evidence indeed that, in plants, flavonoids may strongly affect phytohormone signaling, e.g., auxin and abscisic acid signaling. This function is served by flavonoids in a very low (nM) concentration range and involves the ability of flavonoids to inhibit the activity of a wide range of protein kinases, including but not limited to mitogen-activated protein kinases, that operate downstream of ROS in the regulation of cell growth and differentiation. For example, flavonoids inhibit the transport of auxin acting on serine–threonine PINOID (PID) kinases that regulate the localization of auxin efflux facilitators PIN-formed (PIN) proteins. Flavonoids may also determine auxin gradients at cellular and tissue levels, and the consequential developmental processes, by reducing auxin catabolism. Recent observations lead to the hypothesis that regulation/modulation of auxin transport/signaling is likely an ancestral function of flavonoids. The antagonistic functions of flavonoids on ABA-induced stomatal closure also offer novel hypotheses on the functional role of flavonoids in plant–environment interactions, in early as well as in modern terrestrial plants. Here, we surmise that the regulation of phytohormone signaling might have represented a primary function served by flavonols for the conquest of land by plants and it is still of major significance for the successful acclimation of modern terrestrial plants to a severe excess of radiant energy
    • …
    corecore