38 research outputs found

    Izolacija i sposobnost hvatanja slobodnih radikala cijanidin 3-O-glikozida iz plodova Ribes biebersteinii Berl.

    Get PDF
    The reversed-phase preparative high performance liquid chromatographic purification of the methanol extract of the fruits of Ribes biebersteinii Berl. (Grossulariaceae) afforded five cyanidin glycosides, 3-O-sambubiosyl-5-O-glucosyl cyanidin (1), cyanidin 3-O-sambubioside (2), cyanidin 3-O-glucoside (3), cyanidin 3-O-(2G-xylosyl)-rutinoside (4) and cyanidin 3-O-rutinoside (5). They showed considerable free-radical-scavenging properties in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay with the RC50 values of 9.29 × 106, 9.33 × 106, 8.31 × 106, 8.96 × 106 and 9.55 × 106 mol L1, respectively. The structures of these compounds were elucidated by various chemical hydrolyses and spectroscopic means. The total anthocyanin content was 1.9 g per 100 g dried fruits on cyanidin 3-glucoside basis.Pet cijanidin glikozida, 3-O-sambubiozil-5-O-glukozil cijanidin (1), cijanidin 3-O-sambubiozid (2), cijanidin 3-O-glukozid (3), cijanidin 3-O-(2G-ksilozil)-rutinozid (4) i cijanidin 3-O-rutinosid (5) izolirani su iz metanolnog ekstrakta plodova Ribes biebersteinii Berl. (Grossulariaceae) koristeći reverzno-faznu preparativnu tekućinsku kromatografiju visoke učinkovitosti. Cijanidin glikozidi pokazali su sposobnost hvatanja slobodnih radikala u pokusu s 2,2-difenil-1-pikrilhidrazilom (DPPH). Dobivene su sljedeće RC50 vrijednosti: 9,29 × 106, 9,33 × 106, 8,31 × 106, 8,96 × 106, odnosno 9,55 × 106 mol L1. Strukture glikozida određene su kemijskom hidrolizom i spektroskopijom masa. Ukupni sadržaj antocijanina bio je 1,9 g na 100 g suhih plodova preračunato na cijanidin 3-glukozid

    Within-individual phenotypic plasticity in flowers fosters pollination niche shift

    Get PDF
    Authors thank Raquel Sánchez, Angel Caravante, Isabel Sánchez Almazo, Tatiana López Pérez, Samuel Cantarero, María José Jorquera and Germán Fernández for helping us during several phases of the study and Iván Rodríguez Arós for drawing the insect silhouettes. This research is supported by grants from the Spanish Ministry of Science, Innovation and Universities (CGL2015-71634-P, CGL2015-63827-P, CGL2017-86626-C2-1-P, CGL2017- 86626-C2-2-P, UNGR15-CE-3315, including EU FEDER funds), Junta de Andalucía (P18- FR-3641), Xunta de Galicia (CITACA), BBVA Foundation (PR17_ECO_0021), and a contract grant to C.A. from the former Spanish Ministry of Economy and Competitiveness (RYC-2012-12277). This is a contribution to the Research Unit Modeling Nature, funded by the Consejería de Economía, Conocimiento, Empresas y Universidad, and European Regional Development Fund (ERDF), reference SOMM17/6109/UGR.Phenotypic plasticity, the ability of a genotype of producing different phenotypes when exposed to different environments, may impact ecological interactions. We study here how within-individual plasticity in Moricandia arvensis flowers modifies its pollination niche. During spring, this plant produces large, cross-shaped, UV-reflecting lilac flowers attracting mostly long-tongued large bees. However, unlike most co-occurring species, M. arvensis keeps flowering during the hot, dry summer due to its plasticity in key vegetative traits. Changes in temperature and photoperiod in summer trigger changes in gene expression and the production of small, rounded, UV-absorbing white flowers that attract a different assemblage of generalist pollinators. This shift in pollination niche potentially allows successful reproduction in harsh conditions, facilitating M. arvensis to face anthropogenic perturbations and climate change. Floral phenotypes impact interactions between plants and pollinators. Here, the authors show that Moricandia arvensis displays discrete seasonal plasticity in floral phenotype, with large, lilac flowers attracting long-tongued bees in spring and small, rounded, white flowers attracting generalist pollinators in summer.Spanish Ministry of Science, Innovation and Universities (EU FEDER funds) CGL2015-71634-P CGL2015-63827-P CGL2017-86626-C2-1-P CGL2017-86626-C2-2-P UNGR15-CE-3315Junta de Andalucia P18-FR-3641Xunta de GaliciaBBVA Foundation PR17_ECO_0021Spanish Ministry of Economy and Competitiveness RYC-2012-12277Consejeria de Economia, Conocimiento, Empresas y Universidad SOMM17/6109/UGREuropean Union (EU) SOMM17/6109/UG

    Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial

    Get PDF
    Background: The EMPA KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council

    Flower Colors and Anthocyanin Pigments in Orange-Red Cultivars of Alstroemeria L.

    No full text

    Dendrobium bigibbum

    No full text

    Anthocyanin regulatory and structural genes associated with violet flower color of Matthiola incana

    No full text
    Main conclusion: MiMYB1 and MibHLH2 play key roles in anthocyanin biosynthesis in Matthiola incana flowers. We established a transient expression system using Turnip mosaic virus vector in M. incana. Abstract: Garden stock (Matthiola incana (L.) R. Br.) is a popular flowering plant observed from winter to spring in Japan. Here we observed that anthocyanin accumulation in ‘Vintage Lavender’ increased with flower development, whereas flavonol accumulation remained constant throughout flower development. We obtained five transcription factor genes, MiMYB1, MibHLH1, MibHLH2, MiWDR1, and MiWDR2, from M. incana floral cDNA contigs. Yeast two-hybrid analyses revealed that MiMYB1 interacted with MibHLH1, MibHLH2, and MiWDR1, but MiWDR2 did not interact with any transcription factor. Expression levels of MiMYB1 and MibHLH2 increased in petals during floral bud development. Their expression profiles correlated well with the temporal profiles of MiF3ʹH, MiDFR, MiANS, and Mi3GT transcripts and anthocyanin accumulation profile. On the other hand, MibHLH1 was expressed weakly in all organs of ‘Vintage Lavender’. However, high expression levels of MibHLH1 were detected in petals of other cultivars with higher levels of anthocyanin accumulation than ‘Vintage Lavender’. MiWDR1 and MiWDR2 maintained constant expression levels in petals during flower development and vegetative organs. Transient MiMYB1 expression in 1-month-old M. incana seedlings using a Turnip mosaic virus vector activated transcription of the endogenous anthocyanin biosynthetic genes MiF3ʹH, MiDFR, and MiANS and induced ectopic anthocyanin accumulation in leaves. Therefore, MiMYB1 possibly interacts with MibHLH2 and MiWDR1, and this trimeric protein complex activates the transcription of anthocyanin biosynthetic genes in M. incana flowers. Moreover, MibHLH1 acts as an enhancer of anthocyanin biosynthesis with the MiMYB1–MibHLH2–MiWDR1 complex. This study revealed the molecular mechanism involved in the regulation of anthocyanin accumulation levels in M. incana flowers
    corecore