36 research outputs found

    Lack of uptake of indocyanine green and trypan blue by hepatocellular carcinoma.

    Get PDF
    Experimental hepatocellular carcinoma (HCC) in rats did not take up intravenously administered indocyanine green (ICG) and trypan blue, while surrounding tissue did. The lack of ICG uptake was also observed by peritoneoscopy in patients with HCC. The contrast between ICG-stained cirrhotic nodules and HCC tumors was intensified with infrared photography. Non-uptake of dyes by HCC cells may enable discrimination between tumors and normal cells.</p

    Corrigendum: Use of the index of pulmonary vascular disease for predicting longterm outcome of pulmonary arterial hypertension associated with congenital heart disease

    Get PDF

    Use of the index of pulmonary vascular disease for predicting long-term outcome of pulmonary arterial hypertension associated with congenital heart disease

    Get PDF
    AimsLimited data exist on risk factors for the long-term outcome of pulmonary arterial hypertension (PAH) associated with congenital heart disease (CHD-PAH). We focused on the index of pulmonary vascular disease (IPVD), an assessment system for pulmonary artery pathology specimens. The IPVD classifies pulmonary vascular lesions into four categories based on severity: (1) no intimal thickening, (2) cellular thickening of the intima, (3) fibrous thickening of the intima, and (4) destruction of the tunica media, with the overall grade expressed as an additive mean of these scores. This study aimed to investigate the relationship between IPVD and the long-term outcome of CHD-PAH.MethodsThis retrospective study examined lung pathology images of 764 patients with CHD-PAH aged &lt;20 years whose lung specimens were submitted to the Japanese Research Institute of Pulmonary Vasculature for pulmonary pathological review between 2001 and 2020. Clinical information was collected retrospectively by each attending physician. The primary endpoint was cardiovascular death.ResultsThe 5-year, 10-year, 15-year, and 20-year cardiovascular death-free survival rates for all patients were 92.0%, 90.4%, 87.3%, and 86.1%, respectively. The group with an IPVD of ≥2.0 had significantly poorer survival than the group with an IPVD &lt;2.0 (P = .037). The Cox proportional hazards model adjusted for the presence of congenital anomaly syndromes associated with pulmonary hypertension, and age at lung biopsy showed similar results (hazard ratio 4.46; 95% confidence interval: 1.45–13.73; P = .009).ConclusionsThe IPVD scoring system is useful for predicting the long-term outcome of CHD-PAH. For patients with an IPVD of ≥2.0, treatment strategies, including choosing palliative procedures such as pulmonary artery banding to restrict pulmonary blood flow and postponement of intracardiac repair, should be more carefully considered

    Aberrant splicing of the hRasGRP4 transcript and decreased levels of this signaling protein in the peripheral blood mononuclear cells in a subset of patients with rheumatoid arthritis

    Get PDF
    Introduction: An unidentified population of peripheral blood mononuclear cells (PBMCs) express Ras guanine nucleotide releasing protein 4 (RasGRP4). The aim of our study was to identify the cells in human blood that express hRasGRP4, and then to determine if hRasGRP4 was altered in any patient with rheumatoid arthritis (RA). Methods: Monocytes and T cells were purified from PBMCs of normal individuals, and were evaluated for their expression of RasGRP4 mRNA/protein. The levels of RasGRP4 transcripts were evaluated in the PBMCs from healthy volunteers and RA patients by real-time quantitative PCR. The nucleotide sequences of RasGRP4 cDNAs were also determined. RasGRP4 protein expression in PBMCs/monocytes was evaluated. Recombinant hRasGRP4 was expressed in mammalian cells. Results: Circulating CD14+ cells in normal individuals were found to express hRasGRP4. The levels of the hRasGRP4 transcript were significantly higher in the PBMCs of our RA patients relative to healthy individuals. Sequence analysis of hRasGRP4 cDNAs from these PBMCs revealed 10 novel splice variants. Aberrantly spliced hRasGRP4 transcripts were more frequent in the RA patients than in normal individuals. The presence of one of these abnormal splice variants was linked to RA. The levels of hRasGRP4 protein in PBMCs tended to be lower. As expected, the defective transcripts led to altered and/or nonfunctional protein in terms of P44/42 mitogen-activated protein (MAP) kinase activation. Conclusions: The identification of defective isoforms of hRasGRP4 transcripts in the PBMCs of RA patients raises the possibility that dysregulated expression of hRasGRP4 in developing monocytes plays a pathogenic role in a subset of RA patients

    イメージスキャン画像分割アーキテクチャのLSI設計

    Get PDF
    画像認識処理技術,特にリアルタイムでの動物体検出には,膨大な視覚情報を処理する必要がある.画像分割処理は画像中に存在する物体を抽出する処理で,オブジェクトベースの画像認識などには欠かせない前処理である.これまでに我々は領域成長に基づくイメージスキャン画像分割アーキテクチャを提案した.同アーキテクチャは処理回路 (以下ISE) のサイズとメモリの構成を変えることで,アプリケーションに応じて処理速度と処理回路サイズの最適化が可能な柔軟性を有する.本研究では,同アーキテクチャのボトルネックとなるリーダセル検索を非同期化を行い,180 nm CMOS プロセスでASIC設計を行った

    Catalyst-loaded micro-encapsulated phase change material for thermal control of exothermic reaction

    No full text
    CO2 methanation is a promising technology to enable the use of CO2 as a resource. Thermal control of CO2 methanation, which is a highly active exothermic reaction, is important to avoid thermal runaway and subsequent degradation of the catalyst. Using the heat storage capacity of a phase change material (PCM) for thermal control of the reaction is a novel passive approach. In this study a novel structure was developed, wherein catalysts were directly loaded onto a micro-encapsulated PCM (MEPCM). The MEPCM was prepared in three steps consisting of a boehmite treatment, precipitation treatment, and heat oxidation treatment, and an impregnation process was adopted to prepare a Ni catalyst. The catalyst-loaded MEPCM did not show any breakage or deformation of the capsule or a decrease in the heat storage capacity after the impregnation treatment. MEPCM demonstrated a higher potential as an alternative catalyst support in CO2 methanation than the commercially available alpha -Al2O3 particle. In addition, the heat storage capacity of the catalyst-loaded MEPCM suppressed the temperature rise of the catalyst bed at a high heat absorption rate (2.5 MW m(-3)). In conclusion, the catalyst-loaded MEPCM is a high-speed, high-precision thermal control device because of its high-density energy storage and resolution of a spatial gap between the catalyst and cooling devices. This novel concept has the potential to overcome the technical challenges faced by efficiency enhancement of industrial chemical reactions
    corecore