2,315 research outputs found

    Magnetic aspects of QCD at finite density and temperature

    Full text link
    Some magnetic aspects of QCD are discussed at finite density and temperature. Possibility of spontaneous magnetization is studied within Landau Fermi-liquid theory, and the important roles of the screening effects for gluon propagation are elucidated. Static screening for the longitudinal gluons improves the infrared singularities, while the transverse gluons receive only dynamic screening. The latter property gives rise to a novel non-Fermi-liquid behaviour for the magnetic susceptibility. Appearance of a density-wave state is also discussed in relation to chiral transition, where pseudoscalar condensate as well as scalar one takes a spatially non-uniform form in a chirally invariant way. Accordingly magnetization of quark matter oscillates like spin density wave. A hadron-quark continuity is suggested in this aspect, remembering pion condensation in hadronic phase.Comment: 6 pages, 8 figures, Proc. of INPN2010 to appear in J. Phy

    Finite size effects on kaonic pasta structures

    Full text link
    Non-uniform structures of mixed phases at the first-order phase transition to charged kaon condensation are studied using a density functional theory within the relativistic mean field model. Including electric field effects and applying the Gibbs conditions in a proper way, we numerically determine density profiles of nucleons, electrons and condensed kaons. Importance of charge screening effects is elucidated and thereby we show that the Maxwell construction is effectively justified. Surface effect is also studied to figure out its effect on the density profiles

    Tenth-Order QED Contribution to the Electron g-2 and an Improved Value of the Fine Structure Constant

    Full text link
    This paper presents the complete QED contribution to the electron g-2 up to the tenth order. With the help of the automatic code generator, we have evaluated all 12672 diagrams of the tenth-order diagrams and obtained 9.16 (58)(\alpha/\pi)^5. We have also improved the eighth-order contribution obtaining -1.9097(20)(\alpha/\pi)^4, which includes the mass-dependent contributions. These results lead to a_e(theory)=1 159 652 181.78 (77) \times 10^{-12}. The improved value of the fine-structure constant \alpha^{-1} = 137.035 999 174 (35) [0.25 ppb] is also derived from the theory and measurement of a_e.Comment: 4 pages, 2 figures. Some numbers are slightly change

    Neutrino Opacities in Neutron Stars with Kaon Condensates

    Get PDF
    The neutrino mean free paths in hot neutron-star matter are obtained in the presence of kaon condensates. The kaon-induced neutrino absorption process, which is allowed only in the presence of kaon condensates, is considered for both nondegenerate and degenerate neutrinos. The neutrino mean free path due to this process is compared with that for the neutrino-nucleon scattering. While the mean free path for the kaon-induced neutrino absorption process is shown to be shorter than the ordinary two-nucleon absorption process by several orders of magnitude when temperature is not very high, the neutrino-nucleon scattering process has still a dominant contribution to the neutrino opacity. Thus, the kaon-induced neutrino absorption process has a minor effect on the thermal and dynamical evolution of protoneutron stars.Comment: 35 pages, 4 figure

    Density probability distribution in one-dimensional polytropic gas dynamics

    Full text link
    We discuss the generation and statistics of the density fluctuations in highly compressible polytropic turbulence, based on a simple model and one-dimensional numerical simulations. Observing that density structures tend to form in a hierarchical manner, we assume that density fluctuations follow a random multiplicative process. When the polytropic exponent γ\gamma is equal to unity, the local Mach number is independent of the density, and our assumption leads us to expect that the probability density function (PDF) of the density field is a lognormal. This isothermal case is found to be singular, with a dispersion σs2\sigma_s^2 which scales like the square turbulent Mach number M~2\tilde M^2, where slnρs\equiv \ln \rho and ρ\rho is the fluid density. This leads to much higher fluctuations than those due to shock jump relations. Extrapolating the model to the case γ1\gamma \not =1, we find that, as the Mach number becomes large, the density PDF is expected to asymptotically approach a power-law regime, at high densities when γ<1\gamma<1, and at low densities when γ>1\gamma>1. This effect can be traced back to the fact that the pressure term in the momentum equation varies exponentially with ss, thus opposing the growth of fluctuations on one side of the PDF, while being negligible on the other side. This also causes the dispersion σs2\sigma_s^2 to grow more slowly than M~2\tilde M^2 when γ1\gamma\not=1. In view of these results, we suggest that Burgers flow is a singular case not approached by the high-M~\tilde M limit, with a PDF that develops power laws on both sides.Comment: 9 pages + 12 postscript figures. Submitted to Phys. Rev.

    Confronting Neutron Star Cooling Theories with New Observations

    Full text link
    With the successful launch of Chandra and XMM/Newton X-ray space missions combined with the lower-energy band observations, we are in the position where careful comparison of neutron star cooling theories with observations will make it possible to distinguish among various competing theories. For instance, the latest theoretical and observational developments already exclude both nucleon and kaon direct URCA cooling. In this way we can now have realistic hope for determining various important properties, such as the composition, degree of superfluidity, the equation of state and steller radius. These developments should help us obtain better insight into the properties of dense matter.Comment: 11 pages, 1 figur

    Ground-based Characterization of Hayabusa2 Mission Target Asteroid 162173 Ryugu: Constraining Mineralogical Composition in Preparation for Spacecraft Operations

    Full text link
    Asteroids that are targets of spacecraft missions are interesting because they present us with an opportunity to validate ground-based spectral observations. One such object is near-Earth asteroid (NEA) (162173) Ryugu, which is the target of the Japanese Space Agency's (JAXA) Hayabusa2 sample return mission. We observed Ryugu using the 3-m NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, on July 13, 2016 to constrain the object's surface composition, meteorite analogs, and link to other asteroids in the main belt and NEA populations. We also modeled its photometric properties using archival data. Using the Lommel-Seeliger model we computed the predicted flux for Ryugu at a wide range of viewing geometries as well as albedo quantities such as geometric albedo, phase integral, and spherical Bond albedo. Our computed albedo quantities are consistent with results from Ishiguro et al. (2014). Our spectral analysis has found a near-perfect match between our spectrum of Ryugu and those of NEA (85275) 1994 LY and Mars-crossing asteroid (316720) 1998 BE7, suggesting that their surface regoliths have similar composition. We compared Ryugu's spectrum with that of main belt asteroid (302) Clarissa, the largest asteroid in the Clarissa asteroid family, suggested as a possible source of Ryugu by Campins et al. (2013). We found that the spectrum of Clarissa shows significant differences with our spectrum of Ryugu, but it is similar to the spectrum obtained by Moskovitz et al. (2013). The best possible meteorite analogs for our spectrum of Ryugu are two CM2 carbonaceous chondrites, Mighei and ALH83100.Comment: 23 pages, 7 figures, 4 tables, accepted in Monthly Notices of the Royal Astronomical Society Main Journa
    corecore