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Aiming at reproducing plasma detachment states with a three-dimensional fluid code, we are developing the

Lagrange-Monte-Carlo scheme. It integrates two schemes, namely a Lagrange scheme for the convective part and

a Monte-Carlo scheme for the diffusive part. One advantage of the scheme is the semi-implicit treatment of the

pressure gradient term in the convective part, essential to solve pure-convective problems. As a first step, several

one-dimensional (1D) test calculations have been done so far. In this paper, results of the two preliminary tests

are presented; 1) a test for the Lagrange-scheme solving convective equations and 2) a test for the integrated

Lagrange-Monte-Carlo scheme solving a convection-conduction equation. These tests confirm conservative prop-

erty of the Lagrange scheme and reliability of the integrated Lagrange-Monte-Carlo scheme.

1. Introduction

For future fusion reactors, detachment is a necessary condition to keep the heat and the par-
ticle loads to the divertor plate in manageable levels. Therefore, to understand requirements
for stable operation under detached conditions, several numerical codes exist like SOLPS[1][2],
SONIC[3][4], and EMC3-EIRENE[5][6][7]. In contrast to 2D, it remains an issue to produce
the detachment state with a three-dimensional plasma fluid code. That is not only for 3D stel-
larators. Even in Tokamaks, the axial symmetry does not hold due to the existence of some
gas-pumping/puffing ports and other structures. In order to treat such asymmetric structures,
a three-dimensional fluid code is surely required to get a predictable model of the detachment
state for future fusion reactors.

One difficult matter for a plasma transport code is that there is a strong anisotropy of transport
between (classical) parallel transport along magnetic field lines and (anomalous) radial transport.
This produces numerical accuracy problems solving the discretization matrix equations for finite
discretization methods, i.e., finite-difference, finite-volumes, and finite-elements. To avoid that,
we started to develop a plasma fluid code with the Monte Carlo scheme (MC) which uses pseudo
fluid-particles representing a certain amount of e.g., plasma density, momentum, internal energy.
MC is based on a random walk approach derived for Fokker-Planck-like transport equations.
Therefore, it is very well suited for solving diffusive problems. However, MC fails to obtain the
right solution in some pure convective cases, probably linked to its explicit treatment of the
pressure gradient term. To overcome this problem, we use the Lagrange scheme (LG), because
it is easy for the LG to implement a semi-implicit treatment of the pressure gradient term.

Combining these two approaches, we developed a LG-MC scheme, which integrates the ad-
vantages of both schemes using LG for the convective and MC for the diffusive part. So far,
we got one-dimensional coupled results of the continuity, momentum, and energy equations in a
simple 1D model geometry along the field line.

In this paper, we present first results obtained by LG and LG-MC. The next section will focus
on the detailed description of LG-MC. The 1D results will be shown in Sec. 3 and the summary
will be given in Sec. 4.
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2. The Lagrange-Monte-Carlo Scheme

As a 1D fluid model along the field line, we introduce the continuity, momentum, and energy
equations as follows;
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where m is the ion mass, n, V , Ti, and Te are the plasma density, the ion flow velocity, the ion
temperature, and the electron temperature, respectively. The arc length, x, along the field line
is used as the spatial coordinate. The symbols Sn, SV , STi , and STe denote the source/sink
terms of the particle, momentum, ion heat, and electron heat, respectively. In addition, parallel
thermal conductivity of the ions and that of the electrons are represented by κi and κe. The ion
energy equation, Eq.(3), is reformulated with Eqs.(1) and (2) as
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In LG-MC, Eqs.(1), (2), (4) and (5) are solved as a coupled problem. The algorithm of the
scheme is divided into three sub-steps, i) Initialization of particles and Source, ii) Convection,
and iii) Diffusion. For simplicity, in this section, the description of the algorithm will be given
for a coupled problem of Eqs. (1),(2), and (5). Hereafter, the symbol T and ST denote the ion
temperature and the ion heat source term, respectively.

i) Initialization of particles and Source
First we introduce ”Lagrange particles”. The Lagrange particles have three kinds of weight, Wn

for density n, WV for the momentum mnV , and WT for the internal energy 3nT/2 so that they
satisfy

nj =
NjWn

∆Vj
,mnjVj =
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where Nj is the number of the total Lagrange particles in the j-th cell and ∆Vj is the cell volume.
It should be noted that Wn is a fixed value while WV and WT change during calculations. The
way to update them will be described in the next section, ii) Convection sub-step. Thus, as
the initial setting, Nj is determined by the initial density profile and the constant Wn, then Nj

Lagrange particles having Wn are uniformly distributed in each cell. The other weights, WV and
WT , are determined in each cell according to the initial velocity and temperature profiles.

For the source terms, new Lagrange particles are added to the calculation domain according
to the source terms in Eqs.(1),(2), and (5). The number of the added particles Nadd and their
weights are determined in each cell as;
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where ∆t is a discretized time step.

ii) Convection
We treat all the terms except for the diffusive terms and source terms in this sub-step. Equations
(1),(2), and (5) are reformulated with Lagrange derivative, ddt ≡

∂
∂t + V ∂

∂x as follows;
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Now all the calculated values, n, V , and T , are on the Lagrangian coordinate. To calculate
them numerically with the Lagrange particles, we first renew the weights WV and WT with
Eqs.(9) and (10) as follows;
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Then the Lagrange particles having Wn, W
∗
V , and W ∗

T move with Vp as follows;

x(p)new = x(p)old + Vp∆t, (13)

where x(p)new(old) is the new(old) position of the p-th Lagrange particle. Vp is obtained from
interpolation of the renewed velocities V ∗ at the old position of the p-th particle. The use of V ∗

(not V ) which is updated by the pressure gradient enables the semi-implicit treatment for the
pressure gradient terms.

iii) Diffusion
Finally, the weight of the internal energy of the Lagrange particles are updated by the remaining
term, the heat conduction term. This is done by a Monte-Carlo scheme[8], solving the following
equation;
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At the beginning of this sub-step, ”Monte-Carlo particles” are copied from the Lagrange
particles, i.e., they take over the positions and the weights of the Lagrange particles. Different
to the Lagrange particles, however, the Monte-Carlo particles have only one kind of weight, e.g.,
the internal energy 3nT/2 for the energy equation. The same is possible for viscous conduction
in the momentum equation. To apply MC, Eq. (14) is rewritten as a partial differential equation;
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Using the two-step method[7], transport of the Monte-Carlo particles is implemented;
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where xT (p)
s, xT (p)

i, xT (p)
f , and δt are starting position, intermediate position, final position

of the p-th Monte-Carlo particle, and a discretized time step for this sub-step. The symbol ξ is
a normal random number which satisfies ⟨ξ⟩ = 0 and ⟨ξ2⟩ = 1. After this sub-step, we obtain
new temperature profile from the distribution of the Monte-Carlo particles. Then the weight of
the internal energy of the Lagrange particles are replaced by the new temperature. That is the
end of one series of the algorithm and these sub-steps (Source, Convection, and Diffusion) are
iteratively conducted in LG-MC.

3. Test Problem and Numerical Results

In this section, we present two results from the LG-MC code: coupled results of a convection-
source problem and a result of a convection-conduction problem for the energy equation. The first
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example was done only with LG, i.e., without MC scheme, to validate our numerical algorithm
for the convective-part and the source-part in the system. The second example was done with
LG-MC. To check the integrating algorithm of LG and MC, we solved the energy equation
including convection and conduction terms.

1) coupled results of a convection-source problem
In this problem, Eqs. (1),(2), and (5) have been solved without the heat conduction term in

Eq. (5). The calculation domain is set as a simple 1D SOL model geometry along the field line
as shown in Fig. 1. Assuming uniformly distributed perpendicular particle/heat source from the
core, the source terms have been set as;

Sn = S0θ(xX − x), ST = Q0θ(xX − x), (18)

where S0 and Q0 are the constant particle and heat source, respectively. The function θ(x)
is the Heaviside step function and xX represents the position of the X-point. The distance
between the stagnation point and the divertor plate is Lx = 100 m and the X-point is located
at x = 70 m. The grid resolution ∆x = 5.0 m and the time step is ∆t = 2.29× 10−6 s. For the
boundary condition, V (±Lx) = ±

√
2T (±xL)/m is implemented. From the particle, momentum,

and energy conservation laws, the numerical solution should satisfy following relations in steady
state, if the problem is correctly solved.

nV = S0x(−xX ≤ x ≤ xX), nV = ±S0xX(xX ≤ |x|). (19)
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The relation between the temperature and the velocity is;

T (V ) =
2Q0

5S0
− 1

5
mV 2. (22)

The results with S0 = 5.0 × 1021m−3s−1 are shown in Fig. 1(a)-(e). Equations (19) to (22)
were used for validation.

As shown in Fig. 1, the converged numerical results satisfy particle balance, and energy
balance well. The total pressure in Fig. 1-(d) slightly deviates from the analytic value. Two
small differences at x ∼ −70m and at x ∼ 70m are due to the step-function-form of the source
profile. In the rest of the domain, the slight deviation probably caused by the numerical diffusion
produced, because we use a constant profile in each cell. Although we have such small deviations,
the results in Fig. 1 prove that LG surely works to obtain reasonable 1D results for the three
coupled fluid equations at least for the convective and source terms.

2) a test result of a convection-conduction problem from the energy equation
To validate the integrated scheme of LG and MC, Eq.(5) was solved for the following condi-

tions; STi = Sn = 0, n = Const., and V = Const. The heat coefficient κ was given as κ = κ0T
5
2

and two Dirichlet boundary conditions were set as T (0) = 10eV , T (L) = 1eV . In the LG-MC
scheme, as noted in Sec. 2, the conduction term is treated with the MC scheme while all other
terms are treated with LG. It is also possible to include the conduction term into LG by changing
the weight of temperature WT for the Lagrange particles. Therefore, we solved the same test case
as discussed before with only the LG scheme. In addition, a benchmark was also done for the
same case with a finite-volume scheme (FV)[9]. The stationary results are shown in Fig. 2. For
future applications in 2D and 3D the MC treatment of radial (anomalous) transport is anyhow
needed, LG will be used along the field lines to avoid problems with the pressure gradient terms.

As seen from Fig. 2, the results from the three schemes(LG-MC, LG, and FV) agree well.
The slight difference at the last calculation point near the right boundary originates from the
different treatment of the boundary condition. The Dirichlet boundary condition, T (L) = 1eV ,
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Fig 1: 1D SOL model and 1D results of the Lagrange scheme. (a)density and flow velocity. (b)Ion tem-
perature. The line is the analytical solution of temperature calculated by Eq. (22) using the calculated
velocity. (c)particle conservation. The lines are from Eq.(19). (d)momentum conservation. The line is
the value calculated by Eq. (20). (e)energy conservation. The lines are from Eq. (21)
.
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is set exactly at the right wall in LG while it is set as a virtual ”heat reservoir” at an additional
cell placed outside of the wall in LG-MC. Although we should pay careful attention on this
point in future benchmark problems, the result supports the validity of the LG-MC and the LG
schemes.
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Fig 2: Result of the temperature profile obtained by LG-MC(red dots), LG(blue squares), and FV(solid
line).

4. Summary and Future Plan

As a new numerical scheme for a plasma fluid code, the Lagrange-Monte-Carlo scheme (LG-MC)
has been developed. To validate the algorithm of the scheme, we conducted two numerical tests;
1) a test for the Lagrange-scheme (LG) solving a coupled equations of particle, momentum and
energy conservation with convection and source terms and 2) a test for LG-MC solving the energy
equation with convection and conduction terms. The first case confirmed that particle, momen-
tum, and energy conservation are reasonably satisfied. The second case confirmed the validity of
the combined LG-MC scheme for solving the energy equation with convection and conduction.
At present we extend the LG-MC scheme to solve a more realistic scenario. Afterwards, neutral
sources/sinks will be added to reproduce a detached state and the code will be extended to 2D
or 3D, which is relatively simple for particle methods.
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