16 research outputs found

    Optimising the delivery and monitoring of peptide immunotherapythe delivery and monitoring of peptide immunotherapy for Type 1 diabetes

    Get PDF
    Peptide immunotherapy for Type 1 diabetes aims to restore tolerance to self, whilst leaving the rest of the immune system intact. Once the right peptide isdelivered to the right cell, it is important to closely monitor the effect of such atherapy, both in the regards to the immune and metabolic response. Clinical trials are designed to test the effect of a drug at the end of the trial period, which can be years later. Ex-vivo human models are not subject to extensive regulatory requirements, and can rapidly provide proof of principle on the efficacy of a treatment, which can be then translated to the clinic. I have shown that the skin organ bath culture is a useful system for studying treatment effects of variety of ex-vivo delivered agents. When used to optimise peptides delivery, it indicated a potential role of dry coated microneedles in targeting epidermal DCs, important because of their endogenous tolerogenic potential, which can be further modified by topical treatments and locally injected agents. Whether true tolerogenic potential can be achieved in such a way, is subject to further studies designed to optimise the type, dose and the duration of the treatment by the conditioning agent. My data also suggested that lymph node fine needle aspiration biopsy is a feasible non-invasive method suitable for monitoring the cellular immune responses after antigen skin delivery. Subject to confirmatory study, it has a potential to find immediate application as an efficient and reliable tool for monitoring immune response after antigen-specific immunotherapy in clinical trials. Once recognised as ‘immune responders’ in such a way, participants in clinical trials can be subjected to the monitoring of the metabolic response to the immune intervention, by measuring !-cell function via stimulated UCPCR as a non-invasive and more compliant-prone alternative to the standard MMTT

    Insights from single cell RNA sequencing Into the immunology of type 1 diabetes- cell phenotypes and antigen specificity

    Get PDF
    In the past few years, huge advances have been made in techniques to analyse cells at an individual level using RNA sequencing, and many of these have precipitated exciting discoveries in the immunology of type 1 diabetes (T1D). This review will cover the first papers to use scRNAseq to characterise human lymphocyte phenotypes in T1D in the peripheral blood, pancreatic lymph nodes and islets. These have revealed specific genes such as IL-32 that are differentially expressed in islet –specific T cells in T1D. scRNAseq has also revealed wider gene expression patterns that are involved in T1D and can predict its development even predating autoantibody production. Single cell sequencing of TCRs has revealed V genes and CDR3 motifs that are commonly used to target islet autoantigens, although truly public TCRs remain elusive. Little is known about BCR repertoires in T1D, but scRNAseq approaches have revealed that insulin binding BCRs commonly use specific J genes, share motifs between donors and frequently demonstrate poly-reactivity. This review will also summarise new developments in scRNAseq technology, the insights they have given into other diseases and how they could be leveraged to advance research in the type 1 diabetes field to identify novel biomarkers and targets for immunotherapy

    Topical steroid therapy induces pro-tolerogenic changes in Langerhans cells in human skin

    Get PDF
    We have investigated the efficacy of conditioning skin Langerhans cells (LCs) with agents to promote tolerance and reduce inflammation, with the goal of improving the outcomes of antigen-specific immunotherapy. Topical treatments were assessed ex vivo, using excised human breast skin maintained in organ bath cultures, and in vivo in healthy volunteers by analysing skin biopsies and epidermal blister roof samples. Following topical treatment with a corticosteroid, TNF-α levels were reduced in skin biopsy studies and blister fluid samples. Blister fluid concentrations of MCP-1, MIP-1α, MIP-1β and IP-10 were also reduced, while preserving levels of IL-1α, IL-6, IL-8 and IL-10. Steroid pre-treatment of the skin reduced the ability of LCs to induce proliferation, whilst supernatants showed an increase in the IL-10/IFN-γ ratio. Phenotypic changes following topical steroid treatment were also observed, including reduced expression of CD83 and CD86 in blister derived LCs, but preservation of the tolerogenic signalling molecules ILT3 and PD-1. Reduced expression of HLA-DR, CD80 and CD86 were also apparent in LCs derived from excised human skin. Topical therapy with a vitamin D analogue (calcipotriol) and steroid, calcipotriol alone or Vitamin A elicited no significant changes in the parameters studied. These experiments suggest that pre-conditioning the skin with topical corticosteroid can modulate LCs by blunting their pro-inflammatory signals and potentially enhancing tolerance. We suggest that such modulation prior to antigen specific immunotherapy might provide an inexpensive and safe adjunct to current approaches to treat autoimmune diseases

    Single-cell RNAseq identifies clonally expanded antigen-specific T-cells following intradermal injection of gold nanoparticles loaded with diabetes autoantigen in humans

    Get PDF
    Gold nanoparticles (GNPs) have been used in the development of novel therapies as a way of delivery of both stimulatory and tolerogenic peptide cargoes. Here we report that intradermal injection of GNPs loaded with the proinsulin peptide C19-A3, in patients with type 1 diabetes, results in recruitment and retention of immune cells in the skin. These include large numbers of clonally expanded T-cells sharing the same paired T-cell receptors (TCRs) with activated phenotypes, half of which, when the TCRs were re-expressed in a cell-based system, were confirmed to be specific for either GNP or proinsulin. All the identified gold-specific clones were CD8+, whilst proinsulin-specific clones were both CD8+ and CD4+. Proinsulin-specific CD8+ clones had a distinctive cytotoxic phenotype with overexpression of granulysin (GNLY) and KIR receptors. Clonally expanded antigen-specific T cells remained in situ for months to years, with a spectrum of tissue resident memory and effector memory phenotypes. As the T-cell response is divided between targeting the gold core and the antigenic cargo, this offers a route to improving resident memory T-cells formation in response to vaccines. In addition, our scRNAseq data indicate that focusing on clonally expanded skin infiltrating T-cells recruited to intradermally injected antigen is a highly efficient method to enrich and identify antigen-specific cells. This approach has the potential to be used to monitor the intradermal delivery of antigens and nanoparticles for immune modulation in humans

    Phenotypic Analysis of Human Lymph Nodes in Subjects With New-Onset Type 1 Diabetes and Healthy Individuals by Flow Cytometry.

    Get PDF
    Background: Ultrasound guided sampling of human lymph node (LN) combined with advanced flow cytometry allows phenotypic analysis of multiple immune cell subsets. These may provide insights into immune processes and responses to immunotherapies not apparent from analysis of the blood. Methods: Ultrasound guided inguinal LN samples were obtained by both fine needle aspiration (FNA) and core needle biopsy in 10 adults within 8 weeks of diagnosis of type 1 diabetes (T1D) and 12 age-matched healthy controls at two study centers. Peripheral blood mononuclear cells (PBMC) were obtained on the same occasion. Samples were transported same day to the central laboratory and analyzed by multicolour flow cytometry. Results: LN sampling was well-tolerated and yielded sufficient cells for analysis in 95% of cases. We confirmed the segregation of CD69+ cells into LN and the predominance of CD8+ Temra cells in blood previously reported. In addition, we demonstrated clear enrichment of CD8+ naïve, FOXP3+ Treg, class-switched B cells, CD56bright NK cells and plasmacytoid dendritic cells (DC) in LNs as well as CD4+ T cells of the Th2 phenotype and those expressing Helios and Ki67. Conventional NK cells were virtually absent from LNs as were Th22 and Th1Th17 cells. Paired correlation analysis of blood and LN in the same individuals indicated that for many cell subsets, especially those associated with activation: such as CD25+ and proliferating (Ki67+) T cells, activated follicular helper T cells and class-switched B cells, levels in the LN compartment could not be predicted by analysis of blood. We also observed an increase in Th1-like Treg and less proliferating (Ki67+) CD4+ T cells in LN from T1D compared to control LNs, changes which were not reflected in the blood. Conclusions: LN sampling in humans is well-tolerated. We provide the first detailed "roadmap" comparing immune subsets in LN vs. blood emphasizing a role for differentiated effector T cells in the blood and T cell regulation, B cell activation and memory in the LN. For many subsets, frequencies in blood, did not correlate with LN, suggesting that LN sampling would be valuable for monitoring immuno-therapies where these subsets may be impacted

    Metabolic and immune effects of immunotherapy with proinsulin peptide in human new-onset type 1 diabetes*

    Get PDF
    Immunotherapy using short immunogenic peptides of disease-related autoantigens restores immune tolerance in preclinical disease models. We studied safety and mechanistic effects of injecting human leukocyte antigen–DR4(DRB1*0401)–restricted immunodominant proinsulin peptide intradermally every 2 or 4 weeks for 6 months in newly diagnosed type 1 diabetes patients. Treatment was well tolerated with no systemic or local hypersensitivity. Placebo subjects showed a significant decline in stimulated C-peptide (measuring insulin reserve) at 3, 6, 9, and 12 months versus baseline, whereas no significant change was seen in the 4-weekly peptide group at these time points or the 2-weekly group at 3, 6, and 9 months. The placebo group’s daily insulin use increased by 50% over 12 months but remained unchanged in the intervention groups. C-peptide retention in treated subjects was associated with proinsulin-stimulated interleukin-10 production, increased FoxP3 expression by regulatory T cells, low baseline levels of activated β cell–specific CD8 T cells, and favorable β cell stress markers (proinsulin/C-peptide ratio). Thus, proinsulin peptide immunotherapy is safe, does not accelerate decline in β cell function, and is associated with antigen-specific and nonspecific immune modulation

    Microneedle delivery of autoantigen for immunotherapy in type 1 diabetes

    Get PDF
    Antigen specific immunotherapy mediated via the sustained generation of regulatory T cells arguably represents the ideal therapeutic approach to preventing beta cell destruction in type 1 diabetes. However, there is a need to enhance the efficacy of this approach to achieve disease modification in man. Previous studies suggest that prolonged expression of self-antigen in skin in a non-inflammatory context is beneficial for tolerance induction. We therefore sought to develop a dry-coated microneedle (MN) delivery system and combine it with topical steroid to minimise local inflammation and promote prolonged antigen presentation in the skin. Here we show that a combination of surface-modified MNs coated with appropriate solvent systems can deliver therapeutically relevant quantities of peptide to mouse and human skin even with hydrophobic peptides. Compared to conventional “wet” intradermal (ID) administration, “dry” peptide delivered via MNs was retained for longer in the skin and whilst topical hydration of the skin with vehicle or steroid accelerated loss of ID-delivered peptide from the skin, MN delivery of peptide was unaffected. Furthermore, MN delivery resulted in enhanced presentation of antigen to T cells in skin draining lymph nodes (LNs) both 3 and 10 days after administration. Repeated administration of islet antigen peptide via MN was effective at reducing antigen-specific T cell proliferation in the pancreatic LN, although topical steroid therapy did not enhance this. Taken together, these data show auto-antigenic peptide delivery into skin using coated MNs results in prolonged retention and enhanced antigen presentation compared to conventional ID delivery and this approach may have potential in individuals identified as being at a high risk of developing type 1 diabetes and other autoimmune diseases

    Replacing insulin with immunotherapy: Time for a paradigm change in Type 1 diabetes

    No full text
    For almost a hundred years, the management of Type 1 diabetes has not advanced beyond insulin replacement. However, insulin does not provide satisfactory glycaemic control in the majority of individuals and there remains a major unmet need for novel treatments for Type 1 diabetes. Immunomodulation to preserve beta-cell function offers the prospect of making treatment with insulin easier and/or preventing the need for insulin, particularly when it comes to novel low-risk immunotherapies. Led by the concept that the best insulin-producing cell is a patient's own beta-cell, the Type 1 diabetes scientific community has a challenging task ahead—to fundamentally change the management of this devastating disease by using low-risk immunotherapy to preserve endogenous beta-cell function and make metabolic control substantially easier. In that way, insulin and/or beta-cell replacement (stem cell or transplantation) should in the future be considered rescue therapies reserved for delayed presentations
    corecore