1,482 research outputs found

    Optimal Kullback-Leibler Aggregation via Information Bottleneck

    Full text link
    In this paper, we present a method for reducing a regular, discrete-time Markov chain (DTMC) to another DTMC with a given, typically much smaller number of states. The cost of reduction is defined as the Kullback-Leibler divergence rate between a projection of the original process through a partition function and a DTMC on the correspondingly partitioned state space. Finding the reduced model with minimal cost is computationally expensive, as it requires an exhaustive search among all state space partitions, and an exact evaluation of the reduction cost for each candidate partition. Our approach deals with the latter problem by minimizing an upper bound on the reduction cost instead of minimizing the exact cost; The proposed upper bound is easy to compute and it is tight if the original chain is lumpable with respect to the partition. Then, we express the problem in the form of information bottleneck optimization, and propose using the agglomerative information bottleneck algorithm for searching a sub-optimal partition greedily, rather than exhaustively. The theory is illustrated with examples and one application scenario in the context of modeling bio-molecular interactions.Comment: 13 pages, 4 figure

    Linear Distances between Markov Chains

    Get PDF
    We introduce a general class of distances (metrics) between Markov chains, which are based on linear behaviour. This class encompasses distances given topologically (such as the total variation distance or trace distance) as well as by temporal logics or automata. We investigate which of the distances can be approximated by observing the systems, i.e. by black-box testing or simulation, and we provide both negative and positive results

    Automated Deep Abstractions for Stochastic Chemical Reaction Networks

    Full text link
    Predicting stochastic cellular dynamics as emerging from the mechanistic models of molecular interactions is a long-standing challenge in systems biology: low-level chemical reaction network (CRN) models give raise to a highly-dimensional continuous-time Markov chain (CTMC) which is computationally demanding and often prohibitive to analyse in practice. A recently proposed abstraction method uses deep learning to replace this CTMC with a discrete-time continuous-space process, by training a mixture density deep neural network with traces sampled at regular time intervals (which can obtained either by simulating a given CRN or as time-series data from experiment). The major advantage of such abstraction is that it produces a computational model that is dramatically cheaper to execute, while preserving the statistical features of the training data. In general, the abstraction accuracy improves with the amount of training data. However, depending on a CRN, the overall quality of the method -- the efficiency gain and abstraction accuracy -- will also depend on the choice of neural network architecture given by hyper-parameters such as the layer types and connections between them. As a consequence, in practice, the modeller would have to take care of finding the suitable architecture manually, for each given CRN, through a tedious and time-consuming trial-and-error cycle. In this paper, we propose to further automatise deep abstractions for stochastic CRNs, through learning the optimal neural network architecture along with learning the transition kernel of the abstract process. Automated search of the architecture makes the method applicable directly to any given CRN, which is time-saving for deep learning experts and crucial for non-specialists. We implement the method and demonstrate its performance on a number of representative CRNs with multi-modal emergent phenotypes

    PROCESS OF DEINSTITUTIONALIZATION OF CHILDREN FROM SPECIAL INSTITUTE IN DEMIR KAPIJA

    Get PDF
    This paper is a review of the project/processof deinstitutionalization of children fromSpecial institute in Demir Kapija. It is anempiric and longitudinal study of developmentalachievements of children with severemental retardation. We present ourown experiences, without making comparisonwith other experiences in this process.For the last three and a half years, 50 childrenhave been included in the project: 30of them left the institution and now theystay with their families or foster families.The precondition for leaving the institutionis the change of the children’s condition inregard with abilities for independence, obtainingnew habits and experiences

    Markov chain aggregation and its applications to combinatorial reaction networks

    Full text link
    We consider a continuous-time Markov chain (CTMC) whose state space is partitioned into aggregates, and each aggregate is assigned a probability measure. A sufficient condition for defining a CTMC over the aggregates is presented as a variant of weak lumpability, which also characterizes that the measure over the original process can be recovered from that of the aggregated one. We show how the applicability of de-aggregation depends on the initial distribution. The application section is a major aspect of the article, where we illustrate that the stochastic rule-based models for biochemical reaction networks form an important area for usage of the tools developed in the paper. For the rule-based models, the construction of the aggregates and computation of the distribution over the aggregates are algorithmic. The techniques are exemplified in three case studies.Comment: 29 pages, 9 figures, 1 table; Ganguly and Petrov are authors with equal contributio

    Modelling, Optimization and Optimal Control of Small Scale Stirred Tank Bioreactors

    Get PDF
    Models of the mass-transfer in a stirred tank bioreactor depending on general indexes of the processes of aeration and mixing in concrete simplifications of the hydrodynamic structure of the flows are developed. The offered combined model after parameters identification is used for optimization of the parameters of the apparatus construction. The optimization problem is solved by using of the fuzzy sets theory and in this way the unspecified as a result of the model simplification are read. In conclusion an optimal control of a fed-batch fermentation process of E. coli is completed by using Neuro-Dynamic programming. The received results after optimization show a considerable improvement of the mass-transfer indexes and the quantity indexes at the end of the process

    EPTCS

    Get PDF
    The induction of a signaling pathway is characterized by transient complex formation and mutual posttranslational modification of proteins. To faithfully capture this combinatorial process in a math- ematical model is an important challenge in systems biology. Exploiting the limited context on which most binding and modification events are conditioned, attempts have been made to reduce the com- binatorial complexity by quotienting the reachable set of molecular species, into species aggregates while preserving the deterministic semantics of the thermodynamic limit. Recently we proposed a quotienting that also preserves the stochastic semantics and that is complete in the sense that the semantics of individual species can be recovered from the aggregate semantics. In this paper we prove that this quotienting yields a sufficient condition for weak lumpability and that it gives rise to a backward Markov bisimulation between the original and aggregated transition system. We illustrate the framework on a case study of the EGF/insulin receptor crosstalk

    Long lived transients in gene regulation

    Get PDF
    Gene expression is regulated by the set of transcription factors (TFs) that bind to the promoter. The ensuing regulating function is often represented as a combinational logic circuit, where output (gene expression) is determined by current input values (promoter bound TFs) only. However, the simultaneous arrival of TFs is a strong assumption, since transcription and translation of genes introduce intrinsic time delays and there is no global synchronisation among the arrival times of different molecular species at their targets. We present an experimentally implementable genetic circuit with two inputs and one output, which in the presence of small delays in input arrival, exhibits qualitatively distinct population-level phenotypes, over timescales that are longer than typical cell doubling times. From a dynamical systems point of view, these phenotypes represent long-lived transients: although they converge to the same value eventually, they do so after a very long time span. The key feature of this toy model genetic circuit is that, despite having only two inputs and one output, it is regulated by twenty-three distinct DNA-TF configurations, two of which are more stable than others (DNA looped states), one promoting and another blocking the expression of the output gene. Small delays in input arrival time result in a majority of cells in the population quickly reaching the stable state associated with the first input, while exiting of this stable state occurs at a slow timescale. In order to mechanistically model the behaviour of this genetic circuit, we used a rule-based modelling language, and implemented a grid-search to find parameter combinations giving rise to long-lived transients. Our analysis shows that in the absence of feedback, there exist path-dependent gene regulatory mechanisms based on the long timescale of transients. The behaviour of this toy model circuit suggests that gene regulatory networks can exploit event timing to create phenotypes, and it opens the possibility that they could use event timing to memorise events, without regulatory feedback. The model reveals the importance of (i) mechanistically modelling the transitions between the different DNA-TF states, and (ii) employing transient analysis thereof

    Model Decomposition and Stochastic Fragments

    Get PDF
    In this paper, we discuss a method for decomposition, abstraction and reconstruction of the stochastic semantics of rule-based systems with conserved number of agents. Abstraction is induced by counting fragments instead of the species, which are the standard entities of information in molecular signaling. The rule-set can be decomposed to smaller rule-sets, so that the fragment-based dynamics of the whole rule-set is exactly a composition of species-based dynamics of smaller rule-sets. The reconstruction of the transient species-based dynamics is possible for certain initial distributions. We show that, if all the rules in a rule set are reversible, the reconstruction of the species-based dynamics is always possible at the stationary distribution. We use a case study of colloidal aggregation to demonstrate that the method can reduce the state space exponentially with respect to the standard, species-based description
    • …
    corecore