4 research outputs found

    Rapid method for qualitative detection of 2,4,6-trinitrotoluene in environmental water samples

    No full text
    A gel-based immunoassay that can be used for the detection of 2,4,6-trinitrotoluene (TNT) in water samples was developed. Four polyclonal antibodies were generated in chickens using TNT derivatives. The assay was based on the immunoaffinity preconcentration and immuno-enzyme analysis of TNT in the gel. The results of the assay, assessed by color development, were evaluated visually and also by using a flatbed scanner and subsequent digital processing of the scanned gel. The most sensitive color mode, parameter S (saturation, HSB mode), was used for the immunoassay optimization and evaluation of the results. The immunoassays with the best parameters were optimized and characterized. A cut-off level of 5 mu g TNT L-1 was reached for water samples. It was shown that tap and environmental water samples could be analyzed directly, without sample preparation and dilution. The developed test is acceptable for use in an on-site field test to provide rapid (about 15 min for six samples), qualitative and reliable results for making environmental decisions such as identifying "hot spots", monitoring of military and terrorist activities, and selecting of site samples for laboratory analysis

    An immunochemical test for rapid screening of zearalenone and T-2 toxin

    No full text
    An immunochemically based test for noninstrumental simultaneous detection of zearalenone (ZEA) and T-2 toxin (T2) in feed was developed. The method combines clean-up of sample extract, pre-concentration of analytes by immunoextraction and immunodetection through the enzymatic reaction of horseradish peroxidase (HRP). The test is housed inside a standard 1-mL solid-phase extraction column and consists of three layers: two test layers (one for ZEA and another for T2) with immobilised specific antibodies and one control layer with bound anti-HRP antibodies. Feed extract was passed through an additional column with clean-up layer, which was disconnected after extract application. Total assay time was about 15 min for six samples and detection time was 4 min after chromogenic substrate application. Under optimised conditions a cut-off level for ZEA and T2 of 100 mu g/kg was established. Different feed types were analysed for ZEA and T2 contamination by the proposed method and results were confirmed by LC-MS/MS
    corecore