8,581 research outputs found

    Importance Sampling Simulation of Population Overflow in Two-node Tandem Networks

    Get PDF
    In this paper we consider the application of importance sampling in simulations of Markovian tandem networks in order to estimate the probability of rare events, such as network population overflow. We propose a heuristic methodology to obtain a good approximation to the 'optimal' state-dependent change of measure (importance sampling distribution). Extensive experimental results on 2-node tandem networks are very encouraging, yielding asymptotically efficient estimates (with bounded relative error) where no other state-independent importance sampling techniques are known to be efficient The methodology avoids the costly optimization involved in other recently proposed approaches to approximate the 'optimal' state-dependent change of measure. Moreover, the insight drawn from the heuristic promises its applicability to larger networks and more general topologies

    'Gas cushion' model and hydrodynamic boundary conditions for superhydrophobic textures

    Full text link
    Superhydrophobic Cassie textures with trapped gas bubbles reduce drag, by generating large effective slip, which is important for a variety of applications that involve a manipulation of liquids at the small scale. Here we discuss how the dissipation in the gas phase of textures modifies their friction properties. We propose an operator method, which allows us the mapping of the flow in the gas subphase to a local slip boundary condition at the liquid/gas interface. The determined uniquely local slip length depends on the viscosity contrast and underlying topography, and can be immediately used to evaluate an effective slip of the texture. Besides superlubricating Cassie surfaces our approach is valid for rough surfaces impregnated by a low-viscosity 'lubricant', and even for Wenzel textures, where a liquid follows the surface relief. These results provide a framework for the rational design of textured surfaces for numerous applications.Comment: 8 pages, 6 figure

    Static and dynamic properties of vortices in anisotropic magnetic disks

    Full text link
    We investigate the effect of the magnetic anisotropy (KzK_z) on the static and dynamic properties of magnetic vortices in small disks. Our micromagnetic calculations reveal that for a range of KzK_z there is an enlargement of the vortex core. We analyze the influence of KzK_z on the dynamics of the vortex core magnetization reversal under the excitation of a pulsed field. The presence of KzK_z, which leads to better resolved vortex structures, allows us to discuss in more details the role played by the in-plane and perpendicular components of the gyrotropic field during the vortex-antivortex nucleation and annihilation.Comment: 4 pages, 4 figure

    Sequence variation in CYP51A from the Y strain of Trypanosoma cruzi alters its sensitivity to inhibition

    Get PDF
    CYP51 (sterol 14α-demethylase) is an efficient target for clinical and agricultural antifungals and an emerging target for treatment of Chagas disease, the infection that is caused by multiple strains of a protozoan pathogen Trypanosoma cruzi. Here, we analyze CYP51A from the Y strain T. cruzi. In this protein, proline 355, a residue highly conserved across the CYP51 family, is replaced with serine. The purified enzyme retains its catalytic activity, yet has been found less susceptible to inhibition. These biochemical data are consistent with cellular experiments, both in insect and human stages of the pathogen. Comparative structural analysis of CYP51 complexes with VNI and two derivatives suggests that broad-spectrum CYP51 inhibitors are likely to be preferable as antichagasic drug candidates.Fil: Cherkesova, Tatiana S.. National Academy of Sciences of Belarus. Institute of Bioorganic Chemistry; BielorrusiaFil: Hargrove, Tatiana Y.. Vanderbilt University; Estados UnidosFil: Vanrell, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Ges, Igor. Vanderbilt University; Estados UnidosFil: Usanov, Sergey A.. National Academy of Sciences of Belarus. Institute of Bioorganic Chemistry; BielorrusiaFil: Romano, Patricia Silvia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos. Universidad Nacional de Cuyo. Facultad de Cienicas Médicas. Instituto de Histología y Embriología de Mendoza Dr. Mario H. Burgos; ArgentinaFil: Lepesheva, Galina I.. Vanderbilt University; Estados Unido

    Modelling resonances and orbital chaos in disk galaxies. Application to a Milky Way spiral model

    Full text link
    Context: Resonances in the stellar orbital motion under perturbations from spiral arms structure play an important role in the evolution of the disks of spiral galaxies. The epicyclic approximation allows the determination of the corresponding resonant radii on the equatorial plane (for nearly circular orbits), but is not suitable in general. Aims: We expand the study of resonant orbits by analysing stellar motions perturbed by spiral arms with Gaussian-shaped profiles without any restriction on the stellar orbital configurations, and we expand the concept of Lindblad (epicyclic) resonances for orbits with large radial excursions. Methods: We define a representative plane of initial conditions, which covers the whole phase space of the system. Dynamical maps on representative planes are constructed numerically, in order to characterize the phase-space structure and identify the precise location of resonances. The study is complemented by the construction of dynamical power spectra, which provide the identification of fundamental oscillatory patterns in the stellar motion. Results: Our approach allows a precise description of the resonance chains in the whole phase space, giving a broader view of the dynamics of the system when compared to the classical epicyclic approach, even for objects in retrograde motion. The analysis of the solar neighbourhood shows that, depending on the current azimuthal phase of the Sun with respect to the spiral arms, a star with solar kinematic parameters may evolve either inside the stable co-rotation resonance or in a chaotic zone. Conclusions: Our approach contributes to quantifying the domains of resonant orbits and the degree of chaos in the whole Galactic phase-space structure. It may serve as a starting point to apply these techniques to the investigation of clumps in the distribution of stars in the Galaxy, such as kinematic moving groups.Comment: 17 pages, 15 figures. Matches accepted version in A&
    • 

    corecore