24 research outputs found

    Retinoic Acid and Rapamycin Differentially Affect and Synergistically Promote the Ex Vivo Expansion of Natural Human T Regulatory Cells

    Get PDF
    Natural T regulatory cells (Tregs) are challenging to expand ex vivo, and this has severely hindered in vivo evaluation of their therapeutic potential. All trans retinoic acid (ATRA) plays an important role in mediating immune homeostasis in vivo, and we investigated whether ATRA could be used to promote the ex vivo expansion of Tregs purified from adult human peripheral blood. We found that ATRA helped maintain FOXP3 expression during the expansion process, but this effect was transient and serum-dependent. Furthermore, natural Tregs treated with rapamycin, but not with ATRA, suppressed cytokine production in co-cultured effector T cells. This suppressive activity correlated with the ability of expanded Tregs to induce FOXP3 expression in non-Treg cell populations. Examination of CD45RA+ and CD45RA− Treg subsets revealed that ATRA failed to maintain suppressive activity in either population, but interestingly, Tregs expanded in the presence of both rapamycin and ATRA displayed more suppressive activity and had a more favorable epigenetic status of the FOXP3 gene than Tregs expanded in the presence of rapamycin only. We conclude that while the use of ATRA as a single agent to expand Tregs for human therapy is not warranted, its use in combination with rapamycin may have benefit

    Up-regulation of expression and lack of 5' CpG island hypermethylation of p16 INK4a in HPV-positive cervical carcinomas

    Get PDF
    BACKGROUND: High risk type human papilloma viruses (HR-HPV) induce carcinomas of the uterine cervix by expressing viral oncogenes E6 and E7. Oncogene E7 of HR-HPV disrupts the pRb/E2F interaction, which negatively regulates the S phase entry. Expression of tumor suppressor p16(ink4a )drastically increases in majority of HR-HPV associated carcinomas due to removal of pRb repression. The p16(ink4a )overexpression is an indicator of an aberrant expression of viral oncogenes and may serve as a marker for early diagnostic of cervical cancer. On the other hand, in 25–57% of cervical carcinomas hypermethylation of the p16 INK4a promoter has been demonstrated using a methylation-specific PCR, MSP. To evaluate a potential usage of the p16 INK4a 5' CpG island hypermethylation as an indicator of tumor cell along with p16(ink4a )overexpression, we analyzed the methylation status of p16 INK4a in cervical carcinomas METHODS: Methylation status of p16 INK4a was analyzed by MSP and by bisulfite-modified DNA sequencing. The expression of p16(ink4a )was analyzed by RT-PCR and by immunohistochemical technique. RESULTS: The extensive methylation within p16 INK4a 5' CpG island was not detected either in 13 primary cervical carcinomas or in 5 cancer cell lines by bisulfite-modified DNA sequencing (including those that were positive by MSP in our hands). The number and distribution of rare partially methylated CpG sites did not differ considerably in tumors and adjacent normal tissues. The levels of the p16 INK4a mRNA were increased in carcinomas compared to the normal tissues independently of the number of partially methylated CpGs within 5'CpG island. The transcriptional activation of p16 INK4a was accompanied by p16(ink4a )cytoplasmic immunoreactivity in the majority of tumor cells and presence of a varied number of the p16 positive nuclei in different tumors. CONCLUSION: Hypermethylaion of the p16INK4a 5' CpG island is not a frequent event in HR-HPV-positive cervical carcinomas and cannot be an effective marker of cancer cells with up-regulated expression of p16(ink4a). Our data confirm other previous studies claiming specific p16INK4a up-regulation in the majority of cervical carcinomas at both the protein and mRNA levels. Cytoplasmic accumulation of p16(ink4a )is a feature of cervical carcinomas

    Helios Expression Is a Marker of T Cell Activation and Proliferation

    Get PDF
    Foxp3+ T-regulatory cells (Tregs) normally serve to attenuate immune responses and are key to maintenance of immune homeostasis. Over the past decade, Treg cells have become a major focus of research for many groups, and various functional subsets have been characterized. Recently, the Ikaros family member, Helios, was reported as a marker to discriminate naturally occurring, thymic-derived Tregs from those peripherally induced from naïve CD4+ T cells. We investigated Helios expression in murine and human T cells under resting or activating conditions, using well-characterized molecules of naïve/effector/memory phenotypes, as well as a set of Treg-associated markers. We found that Helios-negative T cells are enriched for naïve T cell phenotypes and vice versa. Moreover, Helios can be induced during T cell activation and proliferation, but regresses in the same cells under resting conditions. We demonstrated comparable findings using human and murine CD4+Foxp3+ Tregs, as well as in CD4+ and CD8+ T cells. Since Helios expression is associated with T cell activation and cellular division, regardless of the cell subset involved, it does not appear suitable as a marker to distinguish natural and induced Treg cells

    Distinct Effects of IL-18 on the Engraftment and Function of Human Effector CD8+ T Cells and Regulatory T Cells

    Get PDF
    IL-18 has pleotropic effects on the activation of T cells during antigen presentation. We investigated the effects of human IL-18 on the engraftment and function of human T cell subsets in xenograft mouse models. IL-18 enhanced the engraftment of human CD8+ effector T cells and promoted the development of xenogeneic graft versus host disease (GVHD). In marked contrast, IL-18 had reciprocal effects on the engraftment of CD4+CD25+Foxp3+ regulatory T cells (Tregs) in the xenografted mice. Adoptive transfer experiments indicated that IL-18 prevented the suppressive effects of Tregs on the development of xenogeneic GVHD. The IL-18 results were robust as they were observed in two different mouse strains. In addition, the effects of IL-18 were systemic as IL-18 promoted engraftment and persistence of human effector T cells and decreased Tregs in peripheral blood, peritoneal cavity, spleen and liver. In vitro experiments indicated that the expression of the IL-18Rα was induced on both CD4 and CD8 effector T cells and Tregs, and that the duration of expression was less sustained on Tregs. These preclinical data suggest that human IL-18 may have use as an adjuvant for immune reconstitution after cytotoxic therapies, and to augment adoptive immunotherapy, donor leukocyte infusions, and vaccine strategies

    Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation

    Get PDF
    Regulatory T cells (T(reg) cells) are essential for self-tolerance and immune homeostasis. Lack of effector T cell (T(eff) cell) function and gain of suppressive activity by T(reg) cells are dependent on the transcriptional program induced by Foxp3. Here we report that repression of SATB1, a genome organizer that regulates chromatin structure and gene expression, was crucial for the phenotype and function of T(reg) cells. Foxp3, acting as a transcriptional repressor, directly suppressed the SATB1 locus and indirectly suppressed it through the induction of microRNAs that bound the SATB1 3' untranslated region. Release of SATB1 from the control of Foxp3 in T(reg) cells caused loss of suppressive function, establishment of transcriptional T(eff) cell programs and induction of T(eff) cell cytokines. Our data support the proposal that inhibition of SATB1-mediated modulation of global chromatin remodeling is pivotal for maintaining T(reg) cell functionality.Marc Beyer... Timothy Sadlon...Simon C Barry... et al
    corecore