18 research outputs found
Hydrothermal synthesis and sorption performance to Cs(I) and Sr(II) of zirconia-analcime composites derived from coal fly ash cenospheres
The paper is concerned with (i) the hydrothermal synthesis of hydrous zirconium dioxide (HZD) bearing analcime (HZD-ANA, zirconia-analcime) and (ii) its sorption properties with respect to Cs+ and Sr2+. The HZD-ANA particles were synthesized from coal fly ash cenospheres composed of aluminosilicate glass with (SiO2/Al2O3)wt.=3.1 and characterized by PXRD, SEM-EDS, STA, and low-temperature N2 adsorption. The non-radioactive simulant solutions of different acidity (pH=2β10) and Cs+/Sr2+ content (0.5β50.0 mg/L) were used in the work. The effect of synthesis conditions on the HZD-ANA particle size, zirconia content and localization as well as the sorption behavior with respect to Cs+ and Sr2+ (capacity, KD) were clarified. It was found that the small-sized HZD-ANA composites surpasses the Zr free analcime and large-sized HZD-ANA material in the Cs+ and Sr2+ sorption parameters (KD ~104β106 mL/g). The conditions to synthesize the zirconia-analcime composite of the highly enhanced sorption ability with respect to Sr2+ (KD ~106 mL/g) were determined. The high-temperature solid-phase re-crystallization of Cs+/Sr2+-exchanged HZD-ANA composites was shown to occur at 1000 Β°C resulting in a polyphase system based on nepheline, tetragonal ZrO2, and glass phase
Preparation of Cenosphere-Derived Lutetium-Aluminosilicate Microspheres as Precursors of Radiation Sources for Brachytherapy
ΠΠΎΠ»ΡΠ΅ Π°Π»ΡΠΌΠΎΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΡΠ΅ ΠΌΠΈΠΊΡΠΎΡΡΠ΅ΡΡ (ΡΠ΅Π½ΠΎΡΡΠ΅ΡΡ) ΡΡΠ°Π±ΠΈΠ»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π°
(ΡΡΠ΅ΠΊΠ»ΠΎΡΠ°Π·Π° β 95.4 ΠΌΠ°Ρ.%; (SiO2/Al2O3) ΡΡΠ΅ΠΊΠ»ΠΎ β 3.1), Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΡΠ΅ ΠΈΠ· Π»Π΅ΡΡΡΠΈΡ
Π·ΠΎΠ» ΠΎΡ ΡΠΆΠΈΠ³Π°Π½ΠΈΡ ΡΠ³Π»Ρ,
Π±ΡΠ»ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π΄Π»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π»ΡΡΠ΅ΡΠΈΠΉ-Π°Π»ΡΠΌΠΎΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΡΡ
ΠΌΠΈΠΊΡΠΎΡΡΠ΅Ρ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΡΠ΅ΠΊΡΡΡΠΎΡΠΎΠ²
ΠΌΠΈΠΊΡΠΎΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² Ξ²-ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ
Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Luβ177, ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΡΡ
Π΄Π»Ρ ΡΠ΅Π»Π΅ΠΊΡΠΈΠ²Π½ΠΎΠΉ
ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠ΅ΡΠ°ΠΏΠΈΠΈ ΠΎΠΏΡΡ
ΠΎΠ»Π΅ΠΉ. ΠΠ»Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ ΠΈΠΎΠ½ΠΎΠ² Lu3+ Π² Π°Π»ΡΠΌΠΎΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΡΠΉ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»
ΡΠ΅Π½ΠΎΡΡΠ΅Ρ Π±ΡΠ»Π° ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° ΡΠ»Π΅Π΄ΡΡΡΠ°Ρ ΡΡΡΠ°ΡΠ΅Π³ΠΈΡ: (1) Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄ΠΈΡΠΈΠΊΠ°ΡΠΈΡ Π³Π»ΠΎΠ±ΡΠ» ΡΠ΅Π½ΠΎΡΡΠ΅Ρ
ΠΏΡΡΡΠΌ ΠΏΡΠ΅Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Π°Π»ΡΠΌΠΎΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ΅ΠΊΠ»Π° Π² ΡΠ΅ΠΎΠ»ΠΈΡΡ Ρ ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΌΡ
ΡΠ΅Π½ΠΎΡΡΠ΅Ρ; (2) ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΠΎΠ΅ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Lu3+ Π² ΡΠ΅ΠΎΠ»ΠΈΡΠ½ΠΎΠΌ ΡΠ»ΠΎΠ΅ ΠΌΠΈΠΊΡΠΎΡΡΠ΅Ρ ΠΏΡΡΠ΅ΠΌ ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ
ΠΎΠ±ΠΌΠ΅Π½Π° 3Na+ β Lu3+; (3) ΠΊΠ°ΠΏΡΡΠ»ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ Lu3+ Π² Π°Π»ΡΠΌΠΎΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΠΎΠΉ ΠΌΠ°ΡΡΠΈΡΠ΅ ΠΌΠΈΠΊΡΠΎΡΡΠ΅Ρ ΠΏΡΡΡΠΌ
Π²ΡΡΠΎΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠ²Π΅ΡΠ΄ΠΎΡΠ°Π·Π½ΠΎΠ³ΠΎ ΠΏΡΠ΅Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠΎΡΠ±ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΌΡ Lu3+ ΠΏΡΠΈ 1000 ΠΈ 1200
ΠΎΠ‘ Π² ΠΌΠ°Π»ΠΎΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΡΠ΅ ΡΠΎΡΠΌΡ. ΠΠΎΠ»ΡΡΠ΅Π½Ρ ΡΠ΅ΠΎΠ»ΠΈΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΌΠΈΠΊΡΠΎΡΡΠ΅ΡΡ, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠ΅ ΡΠ°Π·Ρ
ΡΠ΅ΠΎΠ»ΠΈΡΠ° NaP1 (GIS), ΠΈ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ Π΅Π³ΠΎ ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π°
Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ Lu3+. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ,
ΡΡΠΎ ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½Π°Ρ ΡΠΌΠΊΠΎΡΡΡ ΡΠ΅ΠΎΠ»ΠΈΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ΄ΡΠΊΡΠ° Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ Lu3+ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΎΠΊΠΎΠ»ΠΎ
70 ΠΌΠ³/Π³ Lu3+. ΠΠ±Π½Π°ΡΡΠΆΠ΅Π½ΠΎ, ΡΡΠΎ Π΄Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π½Π°Π³ΡΠ΅Π²Π°Π½ΠΈΠ΅ Lu3+/NaP1-ΠΌΠΈΠΊΡΠΎΡΡΠ΅Ρ Π² Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΌ ΡΠ»ΠΎΠ΅
ΠΏΡΠΈ 1000 ΠΎΠ‘ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΠΈ ΡΠ°Π·Ρ ΠΌΠΎΠ½ΠΎΠΊΠ»ΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΈΡΠΎΡΠΈΠ»ΠΈΠΊΠ°ΡΠ° Π»ΡΡΠ΅ΡΠΈΡ (Lu2Si2O7),
Π² ΡΠΎ Π²ΡΠ΅ΠΌΡ ΠΊΠ°ΠΊ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ Π±ΡΡΡΡΠΎΠ³ΠΎ ΡΠΈΠΊΠ»Π° Π½Π°Π³ΡΠ΅Π²Π°-ΠΎΡ
Π»Π°ΠΆΠ΄Π΅Π½ΠΈΡ
ΠΏΡΠΈ 1200 ΠΎΠ‘ Π² Π΄Π²ΠΈΠΆΡΡΠ΅ΠΌΡΡ ΡΠ»ΠΎΠ΅
ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΠΈΡ Π°ΠΌΠΎΡΡΠΈΠ·Π°ΡΠΈΡ ΡΠ΅ΠΎΠ»ΠΈΡΠ½ΠΎΠ³ΠΎ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠ° Π±Π΅Π· ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ°Π·Ρ Π»ΡΡΠ΅ΡΠΈΡ Ρ ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΠ΅ΠΌ ΡΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΌΡ ΠΏΡΠ΅ΠΊΡΡΡΠΎΡΠ°. ΠΠΈΠΊΡΠΎΡΡΠ΅ΡΡ ΠΊΠ°ΠΊ Ρ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΎΠΉ,
ΡΠ°ΠΊ ΠΈ Π°ΠΌΠΎΡΡΠ½ΠΎΠΉ ΡΠΎΡΠΌΠ°ΠΌΠΈ Π»ΡΡΠ΅ΡΠΈΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΡΡ Π½ΠΈΠ·ΠΊΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΡΡ Π²ΡΡΠ΅Π»Π°ΡΠΈΠ²Π°Π½ΠΈΡ Π»ΡΡΠ΅ΡΠΈΡ
(Rn Π½Π΅ Π²ΡΡΠ΅ 3Γ10β7 Π³/ΡΠΌ2ΓΡΡΡ) Π² ΡΠ°ΡΡΠ²ΠΎΡΠ΅ 0.9 % NaCl, ΠΈΠΌΠΈΡΠΈΡΡΡΡΠ΅ΠΌ ΡΠΎΡΡΠ°Π² ΠΊΡΠΎΠ²ΠΈCoal fly ash hollow aluminosilicate microspheres (cenospheres) of stabilized composition (glass phase β 95.4 wt.%; (SiO2/Al2O3) glass β 3.1) were used to fabricate lutetium-aluminosilicate microspheres as precursors of Luβ177 bearing Ξ²-irradiation sources applied for the selective radiation therapy of tumors. To incorporate Lu3+ ions into cenosphereβs aluminosilicate material, the following strategy was realized: (1) chemical modification of cenosphere globules by conversion of aluminosilicate glass into zeolites preserving a spherical form of cenospheres; (2) the loading of zeolitized microspheres with Lu3+ by means of ion exchange 3Na+ β Lu3+; (3) Lu3+ encapsulation in an aluminosilicate matrix by solid-phase transformation of the Lu3+ sorbed form into insoluble forms under the thermal treatment at 1000β1200 oC. The zeolitized microspheres containing the zeolite phase NaP1 (GIS) were synthesized and their sorption properties with respect to Lu3+ were studied. It was established that the sorption capacity of the zeolitized products is about 70 mg/g Lu3+. It was found that the long-time heating of the Lu3+-loaded zeolite precursor at 1000 oC in a fixed bed resulted in the crystallization of a monoclinic lutecium pyrosilicate (Lu2Si2O7). The fast heatingβcooling cycle at 1200 oC in a moving bed resulted in amorphization of the zeolite component without the formation of the lutecium crystal phase preserving the precursor spherical form. The microspheres based on both crystalline and amorphous Lu forms are characterized by the low Lu leachability rate (Rn β€ 3Γ10β7 g/cm2Γday) in 0.9 % NaCl solution imitating bloo
Synthesis and structure of analcime and analcime-zirconia composite derived from coal fly ash cenospheres
Cubic analcime and analcime-zirconia composite with the Si/Al ratio of 2.04 and 2.16, respectively, was synthesized by hydrothermal treatment of coal fly ash cenospheres (Si/Al = 2.7) at 150Β° C. The scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), synchronous thermal analysis (STA) methods were used to study the morphology, composition and structure of the products. Two main types of analcime bearing particles were obtained, such as hollow microspheres with attached analcime icositetrahedra of 5β50 mm in size and individual analcime crystals of a narrow particle size distribution (Dm = 41 mm) with incorporated zirconia (4.8 wt% Zr). The high quality of the crystalline fractions allowed an accurate full-profile PXRD analysis of complete analcime crystal structure and composition including anisotropic displacement parameters of all atoms and H-positions of water molecules
ΠΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΠΠβΠ°ΠΏΡΠ°ΠΌΠ΅ΡΠΎΠ² ΠΊ ΡΠ΅ΡΠ΄Π΅ΡΠ½ΠΎΠΌΡ Π±Π΅Π»ΠΊΡ, ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠ΅ΠΌΡ ΠΆΠΈΡΠ½ΡΠ΅ ΠΊΠΈΡΠ»ΠΎΡΡ (ΠΊΠ°ΡΠ΄ΠΈΠΎΠΠ‘ΠΠ)
Heart-type fatty acid-binding protein (hFABP) has been proposed as a new biochemical marker
for the early diagnosis of acute myocardial infarction (AMI). The work describes the development of
high-affinity and specific DNA aptamers as sensor elements of analytical systems for the rapid detection
of this marker. Several novel DNA aptamers to hFABP were selected by using hFABP-activated magnetic
microparticles as a target. The DNA library enrichment, affinity and specificity of candidate aptamers
as well their truncated variants, were examined by solid-phase obelin-based bioluminescent assay. High
binding ability was shown for the aptamer FABPAp4 by applying isothermal titration calorimetry (ITC)
technique. The developed aptamers suggest to contain G-quadruplex (GQ) forming motifs that play a key role in binding the target. Demonstrated high affinity and specificity for hFABP determine the prospects
of the obtained aptamers as sensor elements of analytical systems intended for AMI early diagnosisΠ‘Π΅ΡΠ΄Π΅ΡΠ½ΡΠΉ Π±Π΅Π»ΠΎΠΊ, ΡΠ²ΡΠ·ΡΠ²Π°ΡΡΠΈΠΉ ΠΆΠΈΡΠ½ΡΠ΅ ΠΊΠΈΡΠ»ΠΎΡΡ (ΠΊΠ°ΡΠ΄ΠΈΠΎΠΠ‘ΠΠ), ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ
ΠΊΠ°ΠΊ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π½ΠΎΠ²ΡΡ
Π±ΠΈΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΌΠ°ΡΠΊΠ΅ΡΠΎΠ² ΡΠ°Π½Π½Π΅ΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΠΎΡΡΡΠΎΠ³ΠΎ ΠΈΠ½ΡΠ°ΡΠΊΡΠ° ΠΌΠΈΠΎΠΊΠ°ΡΠ΄Π°
(ΠΠΠ). Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΠΎΠΏΠΈΡΠ°Π½ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠΎΠΊΠΎΠ°ΡΡΠΈΠ½Π½ΡΡ
ΠΈ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΡΡ
ΠΠΠ-Π°ΠΏΡΠ°ΠΌΠ΅ΡΠΎΠ²
ΠΊΠ°ΠΊ ΡΠ΅Π½ΡΠΎΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΈΡΡΠ΅ΠΌ, ΠΏΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ΅Π½Π½ΡΡ
Π΄Π»Ρ Π±ΡΡΡΡΠΎΠ³ΠΎ Π²ΡΡΠ²Π»Π΅Π½ΠΈΡ
ΡΡΠΎΠ³ΠΎ ΠΊΠ°ΡΠ΄ΠΈΠΎΠΌΠ°ΡΠΊΠ΅ΡΠ°. ΠΠ±ΠΎΠ³Π°ΡΠ΅Π½ΠΈΠ΅ ΠΠΠ-Π±ΠΈΠ±Π»ΠΈΠΎΡΠ΅ΠΊ ΠΏΡΠΈ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Π½ΠΎΠΌ ΠΎΡΠ±ΠΎΡΠ΅ ΠΊΠ°Π½Π΄ΠΈΠ΄Π°ΡΠ½ΡΡ
ΠΎΠ»ΠΈΠ³ΠΎΠ½ΡΠΊΠ»Π΅ΠΎΡΠΈΠ΄ΠΎΠ², ΠΈΡ
ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ Π°ΡΡΠΈΠ½Π½ΠΎΡΡΡ ΠΈ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ
ΡΠ²Π΅ΡΠ΄ΠΎΡΠ°Π·Π½ΠΎΠ³ΠΎ Π±ΠΈΠΎΠ»ΡΠΌΠΈΠ½Π΅ΡΡΠ΅Π½ΡΠ½ΠΎΠ³ΠΎ ΠΌΠΈΠΊΡΠΎΠ°Π½Π°Π»ΠΈΠ·Π° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠΎΡΠΎΠΏΡΠΎΡΠ΅ΠΈΠ½Π° ΠΎΠ±Π΅Π»ΠΈΠ½Π°. ΠΠ»Ρ
ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Π°ΠΏΡΠ°ΠΌΠ΅ΡΠΎΠ² FABPAp4 ΠΊΠΎΠ½ΡΡΠ°Π½ΡΠ° ΡΠ²ΡΠ·ΡΠ²Π°Π½ΠΈΡ Ρ ΠΌΠΈΡΠ΅Π½ΡΡ Π±ΡΠ»Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π°
Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΠ·ΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΈΡΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΊΠ°Π»ΠΎΡΠΈΠΌΠ΅ΡΡΠΈΠΈ. ΠΠΎΠ»Π΅ΠΊΡΠ»Ρ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Π°ΠΏΡΠ°ΠΌΠ΅ΡΠΎΠ²
ΠΏΡΠ΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠΎΡΠΌΠΈΡΡΡΡ G-ΠΊΠ²Π°Π΄ΡΡΠΏΠ»Π΅ΠΊΡΠ½ΡΠ΅ ΠΌΠΎΡΠΈΠ²Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΠ³ΡΠ°ΡΡ ΠΊΠ»ΡΡΠ΅Π²ΡΡ ΡΠΎΠ»Ρ
Π² ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠΎΠ² Ρ ΡΠ΅Π»Π΅Π²ΠΎΠΉ ΠΊΠ°ΡΠ΄ΠΈΠΎΠΌΠΈΡΠ΅Π½ΡΡ. ΠΡΡΠΎΠΊΠ°Ρ Π°ΡΡΠΈΠ½Π½ΠΎΡΡΡ ΠΈ ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ½ΠΎΡΡΡ
ΠΊ ΠΊΠ°ΡΠ΄ΠΈΠΎΠΠ‘ΠΠ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Π°ΠΏΡΠ°ΠΌΠ΅ΡΠΎΠ² Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ΅Π½ΡΠΎΡΠ½ΡΡ
ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ² Π°Π½Π°Π»ΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΈΡΡΠ΅ΠΌ Π΄Π»Ρ ΡΠ°Π½Π½Π΅ΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΠΠ
Composite Zirconomolybdate Sorbents for Immobilization of f-Metal (III) Cations in a Mineral-Like Matrix
ΠΠΎΠ»ΡΡΠ΅Π½Ρ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΡΠ΅ ΡΠΈΡΠΊΠΎΠ½ΠΎΠΌΠΎΠ»ΠΈΠ±Π΄Π°ΡΠ½ΡΠ΅ ΡΠΎΡΠ±Π΅Π½ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΠΏΡΡΠ΅ΠΌ
Π°Π³Π»ΠΎΠΌΠ΅ΡΠ°ΡΠΈΠΈ ΡΠ»ΠΎΠΈΡΡΠΎΠ³ΠΎ ΡΠΈΡΠΊΠΎΠ½ΠΎΠΌΠΎΠ»ΠΈΠ±Π΄Π°ΡΠ° Ρ Π³Π΅Π»Π΅ΠΌ SiO2 Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ Π½Π°Π½Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°
Π½Π΅ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΡΡ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΡ Π±ΠΈΡ-(2,4,4-ΡΡΠΈΠΌΠ΅ΡΠΈΠ»ΠΏΠ΅Π½ΡΠΈΠ»)-ΡΠΎΡΡΠΈΠ½Π°ΡΠ° Π½Π°ΡΡΠΈΡ (Cyanex 272).
ΠΠ·ΡΡΠ΅Π½Ρ ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π΄Π²ΡΡ
ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΉ Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ ΠΊΠ°ΡΠΈΠΎΠ½ΠΎΠ² Nd3+ ΠΊΠ°ΠΊ ΠΈΠΌΠΈΡΠ°ΡΠΎΡΠ°
Π°ΠΊΡΠΈΠ½ΠΎΠΈΠ΄ΠΎΠ² (Am, Cm) ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ°Π·Ρ Nd2Zr3(MoO4)9, ΠΈΠ·ΠΎΡΡΡΡΠΊΡΡΡΠ½ΠΎΠΉ
ΠΌΠΈΠ½Π΅ΡΠ°Π»Ρ ΠΊΠΎΡΠ½Π°ΡΠΈΡ, ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌ Π²ΡΡΠΎΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π·ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠ΅Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠΎΡΠ±Π΅Π½ΡΠ°.
ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π½Π΅ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈ Π³ΠΈΠ±ΡΠΈΠ΄Π½Π°Ρ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΈ ΠΈΠ·Π²Π»Π΅ΠΊΠ°ΡΡ ΠΊΠ°ΡΠΈΠΎΠ½Ρ Nd3+ ΠΈΠ· ΡΠ°ΡΡΠ²ΠΎΡΠΎΠ² Ρ
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΡΡΠ΄ΠΊΠ° 104 ΠΌΠ»/Π³ ΠΈ ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΌΠΊΠΎΡΡΡΡ 30 ΠΈ 50 ΠΌΠ³/Π³
ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ 650 Β°Π‘ ΠΎΠ±Π΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΈ Ρ ΡΠΎΡΠ±ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌΠΈ ΠΊΠ°ΡΠΈΠΎΠ½Π°ΠΌΠΈ
Nd3+ ΠΏΡΠ΅ΡΠ΅ΡΠΏΠ΅Π²Π°ΡΡ ΡΠ²Π΅ΡΠ΄ΠΎΡΠ°Π·Π½ΡΡ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΡ Ρ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ»ΠΈΡΠ°Π·Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, Π²
ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΠ΅Π»Π΅Π²ΠΎΠΉ ΡΠ°Π·Ρ Nd2Zr3(MoO4)9 ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ Π² ΡΡΠ΅Π΄Π½Π΅ΠΌ ΠΎΠΊΠΎΠ»ΠΎ 30 %.Composite zirconomolybdate sorbents of different compositions were prepared by agglomeration of
layered zirconomolybdate with a SiO2 gel followed by impregnation of a sodium salt of bis-(2,4,4-
trimethylpentyl)-phosphinic acid (Cyanex 272). Sorption properties of two composites with respect
to Nd3+, as an actinide (Am, Cm) surrogate, and possibility of Nd2Zr3(MoO4)9 phase formation, which
is similar by structure to a kosnarite mineral, by high-temperature phase conversion were studied. It
was shown that the inorganic and hybrid composites trap Nd3+ cations from solutions with distribution
coefficients of about 104 mL/g and limit sorption capacities of 30 and 50 mg/g, accordingly. It was
established that solid-phase crystallization of both composites with sorbed Nd3+ takes place at 650 Β°Π‘
resulting in a polyphase system with the content of the target phase Nd2Zr3(MoO4)9 of about 30 %
Solidification of Cs-137-Bearing Radioactive Waste in Cenosphere-Based Mineral-Like Hosts for Long-Term Disposal in Granithoids
ΠΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π½Ρ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΎΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ Cs-137(Na)-
ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΠΆΠΈΠ΄ΠΊΠΈΡ
ΡΠ°Π΄ΠΈΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² Π² ΠΌΠΈΠ½Π΅ΡΠ°Π»ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ
ΡΠΎΡΠΌΠ°Ρ
, Π³Π΅ΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈ
ΡΠΎΠ²ΠΌΠ΅ΡΡΠΈΠΌΡΡ
Ρ Π³ΡΠ°Π½ΠΈΡΠΎΠΈΠ΄Π°ΠΌΠΈ ΠΏΡΠΈ Π΄ΠΎΠ»Π³ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π·Π°Ρ
ΠΎΡΠΎΠ½Π΅Π½ΠΈΠΈ, Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π°Π»ΡΠΌΠΎΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΊΡΡΡΠΎΡΠ° ΠΏΠ΅ΡΡΠΎΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ΅Π½ΠΎΡΡΠ΅Ρ (SiO2/Al2O3=3,4), Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΡΡ
ΠΈΠ· Π»Π΅ΡΡΡΠΈΡ
Π·ΠΎΠ» ΠΎΡ ΡΠΆΠΈΠ³Π°Π½ΠΈΡ ΡΠ³Π»Π΅ΠΉ ΠΡΠ·Π½Π΅ΡΠΊΠΎΠ³ΠΎ Π±Π°ΡΡΠ΅ΠΉΠ½Π°. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΎΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅
ΠΏΠΎ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΡΡ
Π΅ΠΌΠ΅ Cs-ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΡΠ°ΡΡΠ²ΠΎΡΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅
750-1100 Β°Π‘ ΡΡΠ΅ΠΊΠ»ΠΎΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ°ΡΠ½Π΄Ρ, Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΠ΅ 53-79 ΠΌΠ°Ρ. % ΡΠ°Π·Ρ ΠΏΠΎΠ»Π»ΡΡΠΈΡΠ°
ΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΠΈΠ΅ΡΡ ΡΠΊΠΎΡΠΎΡΡΡΡ Π²ΡΡΠ΅Π»Π°ΡΠΈΠ²Π°Π½ΠΈΡ ΡΠ΅Π·ΠΈΡ Π½Π° 2-3 ΠΏΠΎΡΡΠ΄ΠΊΠ° Π½ΠΈΠΆΠ΅ Π½ΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ, ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π² Π ΠΎΡΡΠΈΠΈ Π΄Π»Ρ ΠΎΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Π½ΡΡ
Π²ΡΡΠΎΠΊΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ²Theoretical and practical possibility to stabilize Cs-137(Na)-bearing liquid radioactive waste in
mineral-like forms which are geochemically compatible with granithoids in its long-term disposal
was demonstrated. Perforated cenospheres (SiO2/Al2O3=3.4) of fly ash generated from combustion
of kuznetskii coal was used as an aluminosilicate precursor. It was established that solidification of
Cs-bearing solutions at 750-1100 Β°Π‘ via the proposed route resulted in glass-crystalline compounds
incorporating 53-79 wt. % pollucite with the Cs leaching rate being by 2-3 order of magnitude lower
than the standard parameter accepted in Russia for solidified high level wast
Composite Zirconomolybdate Sorbents for Immobilization of f-Metal (III) Cations in a Mineral-Like Matrix
ΠΠΎΠ»ΡΡΠ΅Π½Ρ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΡΠ΅ ΡΠΈΡΠΊΠΎΠ½ΠΎΠΌΠΎΠ»ΠΈΠ±Π΄Π°ΡΠ½ΡΠ΅ ΡΠΎΡΠ±Π΅Π½ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° ΠΏΡΡΠ΅ΠΌ
Π°Π³Π»ΠΎΠΌΠ΅ΡΠ°ΡΠΈΠΈ ΡΠ»ΠΎΠΈΡΡΠΎΠ³ΠΎ ΡΠΈΡΠΊΠΎΠ½ΠΎΠΌΠΎΠ»ΠΈΠ±Π΄Π°ΡΠ° Ρ Π³Π΅Π»Π΅ΠΌ SiO2 Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ Π½Π°Π½Π΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°
Π½Π΅ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΡΡ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΡ Π±ΠΈΡ-(2,4,4-ΡΡΠΈΠΌΠ΅ΡΠΈΠ»ΠΏΠ΅Π½ΡΠΈΠ»)-ΡΠΎΡΡΠΈΠ½Π°ΡΠ° Π½Π°ΡΡΠΈΡ (Cyanex 272).
ΠΠ·ΡΡΠ΅Π½Ρ ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π΄Π²ΡΡ
ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΉ Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ ΠΊΠ°ΡΠΈΠΎΠ½ΠΎΠ² Nd3+ ΠΊΠ°ΠΊ ΠΈΠΌΠΈΡΠ°ΡΠΎΡΠ°
Π°ΠΊΡΠΈΠ½ΠΎΠΈΠ΄ΠΎΠ² (Am, Cm) ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠΎΡΠΌΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ°Π·Ρ Nd2Zr3(MoO4)9, ΠΈΠ·ΠΎΡΡΡΡΠΊΡΡΡΠ½ΠΎΠΉ
ΠΌΠΈΠ½Π΅ΡΠ°Π»Ρ ΠΊΠΎΡΠ½Π°ΡΠΈΡ, ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²ΠΎΠΌ Π²ΡΡΠΎΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π·ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠ΅Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΡΠΎΡΠ±Π΅Π½ΡΠ°.
ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ Π½Π΅ΠΎΡΠ³Π°Π½ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈ Π³ΠΈΠ±ΡΠΈΠ΄Π½Π°Ρ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΈ ΠΈΠ·Π²Π»Π΅ΠΊΠ°ΡΡ ΠΊΠ°ΡΠΈΠΎΠ½Ρ Nd3+ ΠΈΠ· ΡΠ°ΡΡΠ²ΠΎΡΠΎΠ² Ρ
ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠΌ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΡΡΠ΄ΠΊΠ° 104 ΠΌΠ»/Π³ ΠΈ ΠΏΡΠ΅Π΄Π΅Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΌΠΊΠΎΡΡΡΡ 30 ΠΈ 50 ΠΌΠ³/Π³
ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ 650 Β°Π‘ ΠΎΠ±Π΅ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΈ Ρ ΡΠΎΡΠ±ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌΠΈ ΠΊΠ°ΡΠΈΠΎΠ½Π°ΠΌΠΈ
Nd3+ ΠΏΡΠ΅ΡΠ΅ΡΠΏΠ΅Π²Π°ΡΡ ΡΠ²Π΅ΡΠ΄ΠΎΡΠ°Π·Π½ΡΡ ΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΠ·Π°ΡΠΈΡ Ρ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ»ΠΈΡΠ°Π·Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ, Π²
ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΠ΅Π»Π΅Π²ΠΎΠΉ ΡΠ°Π·Ρ Nd2Zr3(MoO4)9 ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ Π² ΡΡΠ΅Π΄Π½Π΅ΠΌ ΠΎΠΊΠΎΠ»ΠΎ 30 %.Composite zirconomolybdate sorbents of different compositions were prepared by agglomeration of
layered zirconomolybdate with a SiO2 gel followed by impregnation of a sodium salt of bis-(2,4,4-
trimethylpentyl)-phosphinic acid (Cyanex 272). Sorption properties of two composites with respect
to Nd3+, as an actinide (Am, Cm) surrogate, and possibility of Nd2Zr3(MoO4)9 phase formation, which
is similar by structure to a kosnarite mineral, by high-temperature phase conversion were studied. It
was shown that the inorganic and hybrid composites trap Nd3+ cations from solutions with distribution
coefficients of about 104 mL/g and limit sorption capacities of 30 and 50 mg/g, accordingly. It was
established that solid-phase crystallization of both composites with sorbed Nd3+ takes place at 650 Β°Π‘
resulting in a polyphase system with the content of the target phase Nd2Zr3(MoO4)9 of about 30 %
Sorption Properties of ZrO2-Analcime Composites in Relation to Cs(I) and Sr(II)
ΠΠΎΠ»ΡΡΠ΅Π½Ρ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠ½ΡΠ΅ ΡΠ΅ΠΎΠ»ΠΈΡΠ½ΡΠ΅ ΡΠΎΡΠ±Π΅Π½ΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π°Π½Π°Π»ΡΡΠΈΠΌΠ° Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡΠΌΠΈ
Π³ΠΈΠ΄ΡΠ°ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π΄ΠΈΠΎΠΊΡΠΈΠ΄Π° ΡΠΈΡΠΊΠΎΠ½ΠΈΡ (ZrO2-Π°Π½Π°Π»ΡΡΠΈΠΌ) ΠΏΡΡΠ΅ΠΌ Π³ΠΈΠ΄ΡΠΎΡΠ΅ΡΠΌΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠΈ
ΡΠ΅Π½ΠΎΡΡΠ΅Ρ Π»Π΅ΡΡΡΠΈΡ
ΡΠ½Π΅ΡΠ³Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ
Π·ΠΎΠ» Ρ Π²ΡΡΠΎΠΊΠΈΠΌ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΡΡΠ΅ΠΊΠ»ΠΎΡΠ°Π·Ρ Π² ΠΏΡΠΈΡΡΡΡΡΠ²ΠΈΠΈ
ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΡ ΡΠΈΡΠΊΠΎΠ½ΠΈΡ ΠΈ ΡΠ΅Π»ΠΎΡΠ½ΠΎΠ³ΠΎ Π°ΠΊΡΠΈΠ²ΠΈΡΡΡΡΠ΅Π³ΠΎ Π°Π³Π΅Π½ΡΠ° ΠΏΡΠΈ 150 Β°C ΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅
ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠΈΠ²Π°Π½ΠΈΡ ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΡΠΌΠ΅ΡΠΈ. ΠΡΠΎΠ΄ΡΠΊΡΡ ΡΠΈΠ½ΡΠ΅Π·Π° ΠΎΡ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΠΎΠ²Π°Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ Π Π€Π,
Π ΠΠ-ΠΠΠ‘, Π‘Π’Π ΠΈ Π½ΠΈΠ·ΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠΉ Π°Π΄ΡΠΎΡΠ±ΡΠΈΠΈ Π°Π·ΠΎΡΠ°, ΠΈΠ·ΡΡΠ΅Π½Ρ ΠΈΡ
ΡΠΎΡΠ±ΡΠΈΠΎΠ½Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π°
Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ Cs+ ΠΈ Sr2+ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ ΡΠ = 2β10. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΈ ZrO2-Π°Π½Π°Π»ΡΡΠΈΠΌ
ΠΏΡΠ΅Π²ΠΎΡΡ
ΠΎΠ΄ΡΡ Π½Π΅ΠΌΠΎΠ΄ΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ Π°Π½Π°Π»ΡΡΠΈΠΌ Π² 2β5 ΡΠ°Π· ΠΏΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π΅ ΡΠΎΡΠ±ΡΠΈΠΈ Cs+ ΠΈ Sr2+
ΠΈ Π½Π° Π΄Π²Π° ΠΏΠΎΡΡΠ΄ΠΊΠ° ΠΏΠΎ Π²Π΅Π»ΠΈΡΠΈΠ½Π΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠ° ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ (KD ~106 ΠΌΠ»/Π³). ΠΠ·ΡΡΠ΅Π½ ΠΏΡΠΎΡΠ΅ΡΡ
Π²ΡΡΠΎΠΊΠΎΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠ²Π΅ΡΠ΄ΠΎΡΠ°Π·Π½ΠΎΠ³ΠΎ ΠΏΡΠ΅Π²ΡΠ°ΡΠ΅Π½ΠΈΡ Cs+/Sr2+-ΠΎΠ±ΠΌΠ΅Π½Π½ΡΡ
ΡΠΎΡΠΌ ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΉ,
ΠΌΠΎΠ΄Π΅Π»ΠΈΡΡΡΡΠΈΠΉ ΠΏΡΠΎΡΠ΅ΡΡ ΠΏΠ΅ΡΠ΅Π²ΠΎΠ΄Π° Π²ΠΎΠ΄ΠΎΡΠ°ΡΡΠ²ΠΎΡΠΈΠΌΡΡ
ΡΠΎΡΠΌ ΡΠ°Π΄ΠΈΠΎΠ½ΡΠΊΠ»ΠΈΠ΄ΠΎΠ² Csβ137 ΠΈ Srβ90
Π² ΠΌΠΈΠ½Π΅ΡΠ°Π»ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ ΡΠΎΡΠΌΡ. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΏΡΠΈ 1000 Β°C ΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡΠΈΠΈ ZrO2-Π°Π½Π°Π»ΡΡΠΈΠΌ
Ρ ΡΠΎΡΠ±ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌΠΈ ΠΊΠ°ΡΠΈΠΎΠ½Π°ΠΌΠΈ Cs+ ΠΈ Sr2+ ΠΏΡΠ΅ΡΠ΅ΡΠΏΠ΅Π²Π°ΡΡ ΡΠ°Π·ΠΎΠ²ΠΎΠ΅ ΠΏΡΠ΅Π²ΡΠ°ΡΠ΅Π½ΠΈΠ΅ Ρ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ
ΠΏΠΎΠ»ΠΈΡΠ°Π·Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ Π±Π»ΠΈΠ·ΠΊΠΎΠ³ΠΎ ΡΠΎΡΡΠ°Π²Π° Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ°Π· Π½Π΅ΡΠ΅Π»ΠΈΠ½Π°, ΡΠ΅ΡΡΠ°Π³ΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ZrO2
ΠΈ ΡΡΠ΅ΠΊΠ»ΠΎΡΠ°Π·ΡComposite zeolite sorbents based on analcime with inclusions of hydrated zirconium dioxide (ZrO2-analcime) have been obtained by hydrothermal treatment of coal fly ash cenospheres with a high glass phase content in the presence of a zirconium compound and an alkaline activating agent at 150 Β°C and different stirring modes of the reaction mixture. The synthesis products were characterized by XRD, SEM-EDS, STA and low-temperature nitrogen adsorption; their sorption properties with respect to Cs+ and Sr2+ were studied in the pH range of 2β10. It was found that the ZrO2-analcime compositions surpass unmodified analcime by 2β5 times in terms of sorption of Cs+ and Sr2+ and by two orders of magnitude in terms of the distribution coefficient value (KD ~106 ml/g). The process of high-temperature solid-phase transformation of Cs+/Sr2+-exchanged forms of the compositions was studied, which simulates the process of conversion of water-soluble forms of Csβ137 and Srβ90 radionuclides into a mineral-like form. It was shown that at 1000 Β°C the ZrO2-analcime compositions with sorbed Cs+ and Sr2+ undergo the phase transformation resulting in polyphase systems of similar composition based on nepheline, tetragonal ZrO2, and glass phas
Solidification of Cs-137-Bearing Radioactive Waste in Cenosphere-Based Mineral-Like Hosts for Long-Term Disposal in Granithoids
ΠΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π½Ρ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΎΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΡ Cs-137(Na)-
ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΠΆΠΈΠ΄ΠΊΠΈΡ
ΡΠ°Π΄ΠΈΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² Π² ΠΌΠΈΠ½Π΅ΡΠ°Π»ΠΎΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ
ΡΠΎΡΠΌΠ°Ρ
, Π³Π΅ΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈ
ΡΠΎΠ²ΠΌΠ΅ΡΡΠΈΠΌΡΡ
Ρ Π³ΡΠ°Π½ΠΈΡΠΎΠΈΠ΄Π°ΠΌΠΈ ΠΏΡΠΈ Π΄ΠΎΠ»Π³ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΌ Π·Π°Ρ
ΠΎΡΠΎΠ½Π΅Π½ΠΈΠΈ, Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π°Π»ΡΠΌΠΎΡΠΈΠ»ΠΈΠΊΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΊΡΡΡΠΎΡΠ° ΠΏΠ΅ΡΡΠΎΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
ΡΠ΅Π½ΠΎΡΡΠ΅Ρ (SiO2/Al2O3=3,4), Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΡΡ
ΠΈΠ· Π»Π΅ΡΡΡΠΈΡ
Π·ΠΎΠ» ΠΎΡ ΡΠΆΠΈΠ³Π°Π½ΠΈΡ ΡΠ³Π»Π΅ΠΉ ΠΡΠ·Π½Π΅ΡΠΊΠΎΠ³ΠΎ Π±Π°ΡΡΠ΅ΠΉΠ½Π°. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΠΎΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅
ΠΏΠΎ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΡΡ
Π΅ΠΌΠ΅ Cs-ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΡ
ΡΠ°ΡΡΠ²ΠΎΡΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅
750-1100 Β°Π‘ ΡΡΠ΅ΠΊΠ»ΠΎΠΊΡΠΈΡΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΠΎΠΌΠΏΠ°ΡΠ½Π΄Ρ, Π²ΠΊΠ»ΡΡΠ°ΡΡΠΈΠ΅ 53-79 ΠΌΠ°Ρ. % ΡΠ°Π·Ρ ΠΏΠΎΠ»Π»ΡΡΠΈΡΠ°
ΠΈ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΡΡΠΈΠ΅ΡΡ ΡΠΊΠΎΡΠΎΡΡΡΡ Π²ΡΡΠ΅Π»Π°ΡΠΈΠ²Π°Π½ΠΈΡ ΡΠ΅Π·ΠΈΡ Π½Π° 2-3 ΠΏΠΎΡΡΠ΄ΠΊΠ° Π½ΠΈΠΆΠ΅ Π½ΠΎΡΠΌΠ°ΡΠΈΠ²Π½ΠΎΠ³ΠΎ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ, ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π² Π ΠΎΡΡΠΈΠΈ Π΄Π»Ρ ΠΎΡΠ²Π΅ΡΠΆΠ΄Π΅Π½Π½ΡΡ
Π²ΡΡΠΎΠΊΠΎΠ°ΠΊΡΠΈΠ²Π½ΡΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ²Theoretical and practical possibility to stabilize Cs-137(Na)-bearing liquid radioactive waste in
mineral-like forms which are geochemically compatible with granithoids in its long-term disposal
was demonstrated. Perforated cenospheres (SiO2/Al2O3=3.4) of fly ash generated from combustion
of kuznetskii coal was used as an aluminosilicate precursor. It was established that solidification of
Cs-bearing solutions at 750-1100 Β°Π‘ via the proposed route resulted in glass-crystalline compounds
incorporating 53-79 wt. % pollucite with the Cs leaching rate being by 2-3 order of magnitude lower
than the standard parameter accepted in Russia for solidified high level wast
ZrMo2O7(OH)2(H2O)2 coated microsphere glass supports derived from coal fly ash cenospheres as a novel sorbent for radionuclide trapping
Π’Π΅ΠΊΡΡ ΡΡΠ°ΡΡΠΈ Π½Π΅ ΠΏΡΠ±Π»ΠΈΠΊΡΠ΅ΡΡΡ Π² ΠΎΡΠΊΡΡΡΠΎΠΌ Π΄ΠΎΡΡΡΠΏΠ΅ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΏΠΎΠ»ΠΈΡΠΈΠΊΠΎΠΉ ΠΆΡΡΠ½Π°Π»Π°.The nanostructured polycrystalline ZrMo2O7(OH)2(H2O)2 coating was synthesized on coal fly ash cenosphere derived microsphere glass supports via a two-step mild hydrothermal procedure resulting in a microsphere composite of a hollow core-shell structure. Sorption properties of the microsphere composite with respect to Cs+, Sr2+ and Nd3+ as non-radioactive imitators of 137Cs, 90Sr and actinides (III) were estimated. The nanostructured design of the coating was shown to enhance the Nd3+, Sr2+,Cs+ sorption in comparison with pure microsized ZrMo2O7(OH)2(H2O)2. Nd3+, Sr2+, Cs+ sorption distribution coefficients were determined (0.52β104,
0.40β103 and 0.92β102 mL/g, respectively) and preferential Nd3+ sorption was explained on the basis of ZrMo2O7(OH)2(H2O)2 structure