4 research outputs found

    In vitro cytokine stimulation assay for glycolipid biosurfactant from Rhodococcus ruber: role of monocyte adhesion

    Full text link
    Glycolipid biosurfactant (GLB) from Rhodococcus ruber IEGM 231 was found to stimulate tumor necrosis factor-α (TNF-α), interleukin (IL) -1β and IL-6 production when applied as an ultrasonic emulsion to the adherent human peripheral blood monocyte culture. However, a lack of cytokine-stimulating activity was registered with the GLB applied as a hydrophobic film coating in 24-well culture plates, indicating that it may have been due to its inhibitory effect on monocyte adhesion. The mode of GLB application may therefore play an important role in in vitro assay of immunostimulatory activity of this compound as well as other bacterial glycolipids. Additionally, GLB from R. ruber displayed no cytotoxicity against human lymphocytes and therefore could be proposed as a potential immunomodulating and antitumor agent

    A new mineral species rossovskyite, (Fe3+,Ta)(Nb,Ti)O4: crystal chemistry and physical properties

    No full text
    A new mineral rossovskyite named after L.N. Rossovsky was discovered in granite pegmatites of the Bulgut occurrence, Altai Mts., Western Mongolia. Associated minerals are microcline, muscovite, quartz, albite, garnet of the almandine–spessartine series, beryl, apatite, triplite, zircon, pyrite, yttrobetafite-(Y) and schorl. Rossovskyite forms flattened anhedral grains up to 6 × 6 × 2 cm. The color of the mineral is black, and the streak is black as well. The luster is semi-metallic, dull. Mohs hardness is 6. No cleavage or parting is observed. Rossovskyite is brittle, with uneven fracture. The density measured by the hydrostatic weighing method is 6.06 g/cm2, and the density calculated from the empirical formula is 6.302 g/cm3. Rossovskyite is biaxial, and the color in reflection is gray to dark gray. The IR spectrum contains strong band at 567 cm−1 (with shoulders at 500 and 600 cm−1) corresponding to cation–oxygen stretching vibrations and weak bands at 1093 and 1185 cm−1 assigned as overtones. The reflection spectrum in visible range is obtained. According to the Mössbauer spectrum, the ratio Fe2+:Fe3+ is 35.6:64.4. The chemical composition is as follows (electron microprobe, Fe apportioned between FeO and Fe2O3 based on Mössbauer data, wt%): MnO 1.68, FeO 5.92, Fe2O3 14.66, TiO2 7.69, Nb2O5 26.59, Ta2O5 37.51, WO3 5.61, total 99.66. The empirical formula calculated on four O atoms is: Mn2+0.06Mn0.062+ Fe2+0.21Fe0.212+ Fe3+0.47Fe0.473+Ti0.25Nb0.51Ta0.43W0.06O4. The crystal structure was determined using single-crystal X-ray diffraction data. The new mineral is monoclinic, space group P2/c, a = 4.668(1), b = 5.659(1), c = 5.061(1) Å, β = 90.21(1)º; V = 133.70(4) Å3, Z = 2. Topologically, the structure of rossovskyite is analogous to that of wolframite-group minerals. The crystal-chemical formula of rossovskyite is [(Fe3+, Fe2+, Mn)0.57Ta0.32Nb0.11][Nb0.40Ti0.25Fe0.18Ta0.11W0.06]O4. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are as follows: 3.604 (49) (110), 2.938 (100) (−1−11), 2.534 (23) (002), 2.476 (29) (021), 2.337 (27) (200), 1.718 (26) (−202), 1.698 (31) (−2−21), 1.440 (21) (−311). The type specimen of rossovskyite is deposited in the Mineralogical Museum of the Tomsk State University, Tomsk, 634050 Russia, with the inventory number 20927
    corecore