93 research outputs found

    Pressure-induced Superconductivity in a Ferromagnet UGe2_2 -- Resistivity Measurements in Magnetic Field --

    Full text link
    The electrical resistivity measurements in the magnetic field are carried out on the pressure-induced superconductor UGe2_2. The superconductivity is observed from 1.06 to 1.44 GPa. The upper critical field of HC2H_{C2} is anisotropic where HC2(T)H_{C2}(T) exhibits positive curvature for H//bH//b and cc-axis. The characteristic enhancement of HC2H_{C2} is reconfirmed for H//aH//a-axis. In the temperature and field dependence of resistivity at P>PCP > P_{C} where the ferromagnetic ordering disappears, it is observed that the application of the external field along the {\it a}-axis increases the coefficient of Fermi liquid behavior AT2AT^{2} correspondingly to the metamagnetic transition.Comment: To be published in the proceeding of the International Conference on High Pressure Science and Technology(AIRAPT-18),Beijing,China,23-27 July 200

    Magnetic measurements at pressures above 10 GPa in a miniature ceramic anvil cell for a superconducting quantum interference device magnetometer

    Full text link
    A miniature ceramic anvil high pressure cell (mCAC) was earlier designed by us for magnetic measurements at pressures up to 7.6 GPa in a commercial superconducting quantum interference (SQUID) magnetometer [N. Tateiwa et al., Rev. Sci. Instrum. 82, 053906 (2011)]. Here, we describe methods to generate pressures above 10 GPa in the mCAC. The efficiency of the pressure generation is sharply improved when the Cu-Be gasket is sufficiently preindented. The maximum pressure for the 0.6 mm culet anvils is 12.6 GPa when the Cu-Be gasket is preindented from the initial thickness of 0.30 to 0.06 mm. The 0.5 mm culet anvils were also tested with a rhenium gasket. The maximum pressure attainable in the mCAC is about 13 GPa. The present cell was used to study YbCu2Si2 which shows a pressure induced transition from the non-magnetic to magnetic phases at 8 GPa. We confirm a ferromagnetic transition from the dc magnetization measurement at high pressure. The mCAC can detect the ferromagnetic ordered state whose spontaneous magnetic moment is smaller than 1 mB per unit cell. The high sensitivity for magnetic measurements in the mCAC may result from the the simplicity of cell structure. The present study shows the availability of the mCAC for precise magnetic measurements at pressures above 10 GPa

    Normal metal to ferromagnetic superconductor tunneling

    Full text link
    We study the point-contact tunneling between normal metal and ferromagnetic superconductor. In the case of magnon-induced pairing the tunneling conductance is continuous and smooth function of the applied voltage. For small values of the applied voltage the Ohm law holds. We show that one can obtain the magnetization and the superconducting order parameter from the tunneling conduc- tance. In the case of paramagnon-induced superconductivity the tunneling does not depend on the magnetization. We argue that tunneling experiment can unambiguously determine the correct pairing mechanism in the ferromagnetic superconductors.Comment: 6 pages, 4 figur

    Pressure-temperature phase diagram of the heavy-electron superconductor URu2Si2

    Full text link
    The pressure-temperature phase diagram of the heavy-electron superconductor URu2Si2 has been reinvestigated by ac-susceptibility and elastic neutron-scattering (NS) measurements performed on a small single-crystalline rod (2 mm in diameter, 6 mm in length) in a Cu-Be clamp-type high-pressure cell (P < 1.1 GPa). At ambient pressure, this sample shows the weakest antiferromagnetic (AF) Bragg reflections reported so far, corresponding to the volume-averaged staggered moment of mord ~ 0.011 mB/U. Under applied pressure, the AF scattering intensity exhibits a sharp increase at P ~ 0.7 GPa at low temperatures. The saturation value of the AF scattering intensity above 0.7 GPa corresponds to mord ~ 0.41 mB/U, which is in good agreement with that (~ 0.39 mB/U) observed above 1.5 GPa in our previous NS measurements. The superconductivity is dramatically suppressed by the evolution of AF phase, indicating that the superconducting state coexists only with the hidden order phase. The presence of parasitic ferro- and/or antiferromagnetic phases with transition temperatures T1star =120(5) K, T2star = 36(3) K and T3star = 16.5(5) K and their relationship to the low-T ordered phases are also discussed.Comment: 6 pages, 7 figures, submitted to J. Magn. Magn. Mater. (ICM2006

    High-field phase diagram of the Haldane-gap antiferromagnet Ni(C5H14N2)2N3(PF6)Ni (C_5 H_{14} N_2)_2 N_3 (PF_6)

    Full text link
    We have determined the magnetic phase diagram of the quasi-one-dimensional S=S= 1 Heisenberg antiferromagnet Ni(C5H14N2)2N3(PF6)Ni (C_5 H_{14} N_2)_2 N_3 (PF_6) by specific heat measurements to 150 mK in temperature and 32 T in magnetic field. When field is applied along the spin-chain direction, a new phase appears at Hc214H_{c2}\approx 14 T. For the previously known phases of field-induced order, accurate determination is made of the power-law exponents of the ordering temperature near the zero-temperature critical field HcH_c, owing to the four-fold improvement of the minimum temperature over the previous work. The results are compared with the predictions based on the Bose-Einstein condensation of triplet excitations. Substituting deuterium for hydrogen is found to slightly reduce the interchain exchange.Comment: 6 pages, 6 figure

    Tuning Low Temperature Physical Properties of CeNiGe3_{3} by Magnetic Field

    Full text link
    We have studied the thermal, magnetic, and electrical properties of the ternary intermetallic system CeNiGe3_{3} by means of specific heat, magnetization, and resistivity measurements. The specific heat data, together with the anisotropic magnetic susceptibility, was analyzed on the basis of the point charge model of crystalline electric field. The JJ\,=\,5/2 multiplet of the Ce3+^{3+} is split by the crystalline electric field (CEF) into three Kramers doublets, where the second and third doublet are separated from the first (ground state) doublet by Δ1\Delta_{1} \sim 100\,K and Δ2\Delta_{2} \sim 170\,K, respectively. In zero field CeNiGe3_{3} exhibits an antiferromangeic order below TNT_{N} = 5.0\,K. For \textbf{H}\,\parallel\,\textbf{a} two metamagnetic transitions are clearly evidenced between 2\,\sim\,4\,K from the magnetization isotherm and extended down to 0.4\,K from the magnetoresistance measurements. For \textbf{H}\,\parallel\,\textbf{a}, TNT_{N} shifts to lower temperature as magnetic field increases, and ultimately disappears at HcH_{c} \sim 32.5\,kOe. For H>HcH\,>\,H_{c}, the electrical resistivity shows the quadratic temperature dependence (Δρ=AT2\Delta\rho = A T^{2}). For HHcH \gg H_{c}, an unconventional TnT^{n}-dependence of Δρ\Delta\rho with n>2n > 2 emerges, the exponent nn becomes larger as magnetic field increases. Although the antiferromagnetic phase transition temperature in CeNiGe3_{3} can be continuously suppressed to zero, it provides an example of field tuning that does not match current simple models of Quantum criticality.Comment: accepted PR

    Diamagnetic susceptibility of spin-triplet ferromagnetic superconductors

    Full text link
    We calculate the diamagnetic susceptibility in zero external magnetic field above the phase transition from ferromagnetic phase to phase of coexistence of ferromagnetic order and unconventional superconductivity. For this aim we use generalized Ginzburg-Landau free energy of unconventional ferromagnetic superconductor with spin-triplet electron pairing. A possible application of the result to some intermetallic compounds is briefly discussed.Comment: 7 pages, 1 figur

    Effects of Randomness on the Field-Induced Phase Transition in the S=1 Bond-Alternating Spin Chain NTENP

    Full text link
    We report novel effects of randomness in the S=1 bond-alternating antiferromagnetic chain compound with a dimer-singlet ground state [Ni(N,N'-bis(3-aminopropyl)propane-1,3-diamine(mu-NO2]ClO4 abbreviated as NTENP. The 15N NMR spectra develop a continuum with sharply peaked edges at low temperatures, indicating an inhomogeneous staggered magnetization induced by magnetic field. We attribute this to random anisotropic interactions due to disorder of NO2 groups in the chains. The field-induced antiferromagnetic transition exhibits remarkably anisotropic behavior. We propose that a field-induced incoherent magnetization is transformed into a coherent antiferromagnetic moment with spatially fluctuating amplitude.Comment: 4pages, 5 figues, submitted to J. Phys. Soc. Jp

    Coupled CDW and SDW Fluctuations as an Origin of Anomalous Properties of Ferromagnetic Superconductor UGe_2

    Full text link
    It is shown that anomalous properties of UGe_2 can be understood in a unified way on the basis of a single assumption that the superconductivity is mediated by the coupled SDW and CDW fluctuations induced by the imperfect nesting of the Fermi surface with majority spins at T=T_x(P) deep in the ferromagnetic phase. Excess growth of uniform magnetization is shown to develop in the temperature range T<T_x(P) as a mode-coupling effect of coupled growth of SDW and CDW orderings, which has been observed by two different types of experiments. The coupled CDW and SDW fluctuations are shown to be essentially ferromagnetic spin fluctuations which induce a spin-triplet p-wave attraction. These fluctuations consist of two modes, spin and charge fluctuations with large momentum transfer of the nesting vector. An anomalous temperature dependence of the upper critical field H_c2(T) such as crossing of H_c2(T) at P=11.4 kbar and P=13.5 kbar, can be understood by the strong-coupling-superconductivity formalism. Temperature dependence of the lattice specific heat including a large shoulder near T_x is also explained quite well as an effect of a kind of Kohn anomaly associated with coupled SDW-CDW transition.Comment: (12 pages, 10 eps figures) submitted to J. Phys. Soc. Jp

    Improved sensitivity of magnetic measurements under high pressure in miniature ceramic anvil cell for a commercial SQUID magnetometer

    Full text link
    Two modifications have been made to a miniature ceramic anvil high pressure cell (mCAC) designed for magnetic measurements at pressures up to 12.6 GPa in a commercial superconducting quantum interference (SQUID) magnetometer [N. Tateiwa et al., Rev. Sci. Instrum. 82, 053906 (2011)., ibid. 83, 053906 (2012)]. Replacing the Cu-Be piston in the former mCAC with a composite piston composed of the Cu-Be and ceramic cylinders reduces the background magnetization significantly smaller at low temperatures, enabling more precise magnetic measurements at low temperatures. A second modification to the mCAC is the utilization of a ceramic anvil with a hollow in the center of the culet surface. High pressures up to 5 GPa were generated with the "cupped ceramic anvil" with the culet size of 1.0 mm.Comment: Rev. Sci. Instrum. 84, 046105 (2013
    corecore