224 research outputs found

    Stochastic Framework for Evaluating Forest Management Impacts on Water Quality from Watersheds in the Ouachita Mountains

    Get PDF
    Environmental Scienc

    Cattle Grazing and Conservation of a Meadow-Dependent Amphibian Species in the Sierra Nevada

    Get PDF
    World-wide population declines have sharpened concern for amphibian conservation on working landscapes. Across the Sierra Nevada's national forest lands, where almost half of native amphibian species are considered at risk, permitted livestock grazing is a notably controversial agricultural activity. Cattle (Bos taurus) grazing is thought to degrade the quality, and thus reduce occupancy, of meadow breeding habitat for amphibian species of concern such as the endemic Yosemite toad (Anaxyrus [ = Bufo] canorus). However, there is currently little quantitative information correlating cattle grazing intensity, meadow breeding habitat quality, and toad use of meadow habitat. We surveyed biotic and abiotic factors influencing cattle utilization and toad occupancy across 24 Sierra Nevada meadows to establish these correlations and inform conservation planning efforts. We utilized both traditional regression models and Bayesian structural equation modeling to investigate potential drivers of meadow habitat use by cattle and Yosemite toads. Cattle use was negatively related to meadow wetness, while toad occupancy was positively related. In mid and late season (mid July–mid September) grazing periods, cattle selected for higher forage quality diets associated with vegetation in relatively drier meadows, whereas toads were more prevalent in wetter meadows. Because cattle and toads largely occupied divergent zones along the moisture gradient, the potential for indirect or direct negative effects is likely minimized via a partitioning of the meadow habitat. During the early season, when habitat use overlap was highest, overall low grazing levels resulted in no detectable impacts on toad occupancy. Bayesian structural equation analyses supported the hypothesis that meadow hydrology influenced toad meadow occupancy, while cattle grazing intensity did not. These findings suggest cattle production and amphibian conservation can be compatible goals within this working landscape

    Surface and Subsurface Attenuation of Trenbolone Acetate Metabolites and Manure-Derived Constituents in Irrigation Runoff on Agro-Ecosystems

    Get PDF
    Although studies have evaluated the ecotoxicity and fate of trenbolone acetate (TBA) metabolites, namely 17α-trenbolone (17α-TBOH), 17β-trenbolone (17β-TBOH), and trendione (TBO), their environmental transport processes remain poorly characterized with little information available to guide agricultural runoff management. Therefore, we evaluated TBA metabolite transport in representative agricultural systems with concurrent assessment of other manure-derived constituents. Leachate generated using manure from TBA-implanted cattle was applied to a subsurface infiltration plot (4 m) and surface vegetative filter strips (VFSs; 3, 4, and 5 m). In the subsurface experiment, 17α-TBOH leachate concentrations were 36 ng L−1 but decreased to 12 ng L−1 in initial subsurface discharge. Over 75 minutes, concentrations linearly increased to 23 ng L−1 (C/Co = 0.32–0.64). In surface experiments (n = 4), 17α-TBOH leachate concentrations ranged from 11–150 ng L−1, remained nearly constant with time, but were attenuated by ∼70–90% after VFS treatment with no statistical dependence on the VFS length. While attenuation clearly occurred, the observations of a highly mobile fraction of all constituents in both surface runoff and subsurface discharge suggest that these treatment strategies may not always be capable of achieving threshold discharge concentrations. To attain no observed adverse effect levels (NOAELs) in receiving waters, concurrent assessment of leachate concentrations and available dilution capacities can be used to guide target treatment performance levels for runoff management. Dilution is usually necessary to achieve NOAELs, and receiving waters with less than 70–100 fold dilution capacity are at the highest risk for steroidal endocrine disruption

    Determining the effects of cattle grazing treatments on Yosemite toads (Anaxyrus [=Bufo] canorus) in montane meadows.

    Get PDF
    Amphibians are experiencing a precipitous global decline, and population stability on public lands with multiple uses is a key concern for managers. In the Sierra Nevada Mountains (California, USA), managers have specifically identified livestock grazing as an activity that may negatively affect Yosemite toads due to the potential overlap of grazing with toad habitat. Grazing exclusion from Yosemite toad breeding and rearing areas and/or entire meadows have been proposed as possible management actions to alleviate the possible impact of cattle on this species. The primary objective of this study was to determine if different fencing treatments affect Yosemite toad populations. We specifically examined the effect of three fencing treatments on Yosemite toad breeding pool occupancy, tadpoles, and young of the year (YOY). Our hypothesis was that over the course of treatment implementation (2006 through 2010), Yosemite toad breeding pool occupancy and early life stage densities would increase within two fencing treatments relative to actively grazed meadows due to beneficial changes to habitat quality in the absence of grazing. Our results did not support our hypothesis, and showed no benefit to Yosemite toad presence or early life stages in fenced or partially fenced meadows compared to standard USDA Forest Service grazing levels. We found substantial Yosemite toad variation by both meadow and year. This variation was influenced by meadow wetness, with water table depth significant in both the tadpole and YOY models

    Causal Connections between Water Quality and Land Use in a Rural Tropical Island Watershed: Rural Tropical Island Watershed Analysis

    Get PDF
    We examined associations between riparian canopy cover, presence or absence of cattle, rainfall, solar radiation, month of year, dissolved oxygen, turbidity, salinity, and Enterococcus concentrations in riparian surface soils with Enterococcus geometric mean in-stream water concentrations at Waipā watershed on the north side of the Hawaiian island Kaua’i. Each 1% decrease in riparian canopy cover was associated with a 4.6 most probable number (MPN)/100 ml increase of the geometric mean of Enterococcus in stream water (P < 0.05). Each unit decrease in salinity (ppt) was associated with an increase of Enterococcus by 68.2 MPN/100 ml in-stream water geometric mean concentrations (P < 0.05). Month of year was also associated with increases in stream water Enterococcus geometric mean concentrations (P < 0.05). Reducing riparian canopy cover is associated with Enterococcus increases in stream water, suggesting that decreasing riparian vegetation density could increase fecal bacteria surface runoff
    corecore