5,711 research outputs found
Electron-scale reduced fluid models with gyroviscous effects
Reduced fluid models for collisionless plasmas including electron inertia and
finite Larmor radius corrections are derived for scales ranging from the ion to
the electron gyroradii. Based either on pressure balance or on the
incompressibility of the electron fluid, they respectively capture kinetic
Alfv\'en waves (KAWs) or whistler waves (WWs), and can provide suitable tools
for reconnection and turbulence studies. Both isothermal regimes and Landau
fluid closures permitting anisotropic pressure fluctuations are considered. For
small values of the electron beta parameter , a perturbative
computation of the gyroviscous force valid at scales comparable to the electron
inertial length is performed at order , which requires second-order
contributions in a scale expansion. Comparisons with kinetic theory are
performed in the linear regime. The spectrum of transverse magnetic
fluctuations for strong and weak turbulence energy cascades is also
phenomenologically predicted for both types of waves. In the case of moderate
ion to electron temperature ratio, a new regime of KAW turbulence at scales
smaller than the electron inertial length is obtained, where the magnetic
energy spectrum decays like , thus faster than the
spectrum of WW turbulence.Comment: 29 pages, 4 figure
A City-Scale ITS-G5 Network for Next-Generation Intelligent Transportation Systems: Design Insights and Challenges
As we move towards autonomous vehicles, a reliable Vehicle-to-Everything
(V2X) communication framework becomes of paramount importance. In this paper we
present the development and the performance evaluation of a real-world
vehicular networking testbed. Our testbed, deployed in the heart of the City of
Bristol, UK, is able to exchange sensor data in a V2X manner. We will describe
the testbed architecture and its operational modes. Then, we will provide some
insight pertaining the firmware operating on the network devices. The system
performance has been evaluated under a series of large-scale field trials,
which have proven how our solution represents a low-cost high-quality framework
for V2X communications. Our system managed to achieve high packet delivery
ratios under different scenarios (urban, rural, highway) and for different
locations around the city. We have also identified the instability of the
packet transmission rate while using single-core devices, and we present some
future directions that will address that.Comment: Accepted for publication to AdHoc-Now 201
Hamiltonian closures for fluid models with four moments by dimensional analysis
Fluid reductions of the Vlasov-Amp{\`e}re equations that preserve the
Hamiltonian structure of the parent kinetic model are investigated. Hamiltonian
closures using the first four moments of the Vlasov distribution are obtained,
and all closures provided by a dimensional analysis procedure for satisfying
the Jacobi identity are identified. Two Hamiltonian models emerge, for which
the explicit closures are given, along with their Poisson brackets and Casimir
invariants
Derivation of reduced two-dimensional fluid models via Dirac's theory of constrained Hamiltonian systems
We present a Hamiltonian derivation of a class of reduced plasma
two-dimensional fluid models, an example being the Charney-Hasegawa-Mima
equation. These models are obtained from the same parent Hamiltonian model,
which consists of the ion momentum equation coupled to the continuity equation,
by imposing dynamical constraints. It is shown that the Poisson bracket
associated with these reduced models is the Dirac bracket obtained from the
Poisson bracket of the parent model
Mode signature and stability for a Hamiltonian model of electron temperature gradient turbulence
Stability properties and mode signature for equilibria of a model of electron
temperature gradient (ETG) driven turbulence are investigated by Hamiltonian
techniques. After deriving the infinite families of Casimir invariants,
associated with the noncanonical Poisson bracket of the model, a sufficient
condition for stability is obtained by means of the Energy-Casimir method. Mode
signature is then investigated for linear motions about homogeneous equilibria.
Depending on the sign of the equilibrium "translated" pressure gradient, stable
equilibria can either be energy stable, i.e.\ possess definite linearized
perturbation energy (Hamiltonian), or spectrally stable with the existence of
negative energy modes (NEMs). The ETG instability is then shown to arise
through a Kre\u{\i}n-type bifurcation, due to the merging of a positive and a
negative energy mode, corresponding to two modified drift waves admitted by the
system. The Hamiltonian of the linearized system is then explicitly transformed
into normal form, which unambiguously defines mode signature. In particular,
the fast mode turns out to always be a positive energy mode (PEM), whereas the
energy of the slow mode can have either positive or negative sign
A Bi-Directional Refinement Algorithm for the Calculus of (Co)Inductive Constructions
The paper describes the refinement algorithm for the Calculus of
(Co)Inductive Constructions (CIC) implemented in the interactive theorem prover
Matita. The refinement algorithm is in charge of giving a meaning to the terms,
types and proof terms directly written by the user or generated by using
tactics, decision procedures or general automation. The terms are written in an
"external syntax" meant to be user friendly that allows omission of
information, untyped binders and a certain liberal use of user defined
sub-typing. The refiner modifies the terms to obtain related well typed terms
in the internal syntax understood by the kernel of the ITP. In particular, it
acts as a type inference algorithm when all the binders are untyped. The
proposed algorithm is bi-directional: given a term in external syntax and a
type expected for the term, it propagates as much typing information as
possible towards the leaves of the term. Traditional mono-directional
algorithms, instead, proceed in a bottom-up way by inferring the type of a
sub-term and comparing (unifying) it with the type expected by its context only
at the end. We propose some novel bi-directional rules for CIC that are
particularly effective. Among the benefits of bi-directionality we have better
error message reporting and better inference of dependent types. Moreover,
thanks to bi-directionality, the coercion system for sub-typing is more
effective and type inference generates simpler unification problems that are
more likely to be solved by the inherently incomplete higher order unification
algorithms implemented. Finally we introduce in the external syntax the notion
of vector of placeholders that enables to omit at once an arbitrary number of
arguments. Vectors of placeholders allow a trivial implementation of implicit
arguments and greatly simplify the implementation of primitive and simple
tactics
On the rate of convergence of the Hamiltonian particle-mesh method
The Hamiltonian Particle-Mesh (HPM) method is a particle-in-cell method for compressible fluid flow with Hamiltonian structure. We present a numer- ical short-time study of the rate of convergence of HPM in terms of its three main governing parameters. We find that the rate of convergence is much better than the best available theoretical estimates. Our results indicate that HPM performs best when the number of particles is on the order of the number of grid cells, the HPM global smoothing kernel has fast decay in Fourier space, and the HPM local interpolation kernel is a cubic spline
On the use of projectors for Hamiltonian systems and their relationship with Dirac brackets
The role of projectors associated with Poisson brackets of constrained
Hamiltonian systems is analyzed. Projectors act in two instances in a bracket:
in the explicit dependence on the variables and in the computation of the
functional derivatives. The role of these projectors is investigated by using
Dirac's theory of constrained Hamiltonian systems. Results are illustrated by
three examples taken from plasma physics: magnetohydrodynamics, the
Vlasov-Maxwell system, and the linear two-species Vlasov system with
quasineutrality
- …
