16 research outputs found

    H1N1pdm Influenza Infection in Hospitalized Cancer Patients: Clinical Evolution and Viral Analysis

    Get PDF
    BACKGROUND: The novel influenza A pandemic virus (H1N1pdm) caused considerable morbidity and mortality worldwide in 2009. The aim of the present study was to evaluate the clinical course, duration of viral shedding, H1N1pdm evolution and emergence of antiviral resistance in hospitalized cancer patients with severe H1N1pdm infections during the winter of 2009 in Brazil. METHODS: We performed a prospective single-center cohort study in a cancer center in Rio de Janeiro, Brazil. Hospitalized patients with cancer and a confirmed diagnosis of influenza A H1N1pdm were evaluated. The main outcome measures in this study were in-hospital mortality, duration of viral shedding, viral persistence and both functional and molecular analyses of H1N1pdm susceptibility to oseltamivir. RESULTS: A total of 44 hospitalized patients with suspected influenza-like illness were screened. A total of 24 had diagnosed H1N1pdm infections. The overall hospital mortality in our cohort was 21%. Thirteen (54%) patients required intensive care. The median age of the studied cohort was 14.5 years (3-69 years). Eighteen (75%) patients had received chemotherapy in the previous month, and 14 were neutropenic at the onset of influenza. A total of 10 patients were evaluated for their duration of viral shedding, and 5 (50%) displayed prolonged viral shedding (median 23, range=11-63 days); however, this was not associated with the emergence of a resistant H1N1pdm virus. Viral evolution was observed in sequentially collected samples. CONCLUSIONS: Prolonged influenza A H1N1pdm shedding was observed in cancer patients. However, oseltamivir resistance was not detected. Taken together, our data suggest that severely ill cancer patients may constitute a pandemic virus reservoir with major implications for viral propagation

    Demonstration of Ignition Radiation Temperatures in Indirect-Drive Inertial Confinement Fusion Hohlraums

    Full text link

    3q29 microduplication syndrome: Description of two new cases and delineation of the minimal critical region

    No full text
    Heterogeneous clinical and neuropsychological features, such as intellectual disability, developmental and language delay, hypotonia, and, to a lesser extent, microcephaly that is present in about the half of the reported patients, characterize the 3q29 microduplication syndrome with usually a milder phenotype compared with the corresponding 3q29 microdeletion syndrome. The duplications described so far range from 2.3 Mb to 1.6 Mb, spanning from TFRC to BDH1 genes. Here we report on two patients with overlapping interstitial duplications of the 3q29 region differing in size. Patient 1 harboured a common-seized 3q29 microduplication spanning 3c1.6 Mb, while patient 2 carried a very small 3q29 microduplication of 448.8 Kb encompassing only two genes, DLG1 and BDH1. Both patients presented clinical characteristics similar to those reported in the literature in 3q29 microduplication syndrome. Interestingly, heterotopic gray matter nodules were found along the right lateral ventricle on brain MRI in patient 1, thus expanding the neuroradiological phenotype in 3q29 microduplication syndrome, while patient 2 allowed us to define with more precision the smallest region of overlap (SRO). Gene content analysis of the duplicated region suggests that gain-of-dosage of DLG1 and BDH1 may be a good candidate for the main clinical features of this syndrome

    Structural brain anomalies in Cri-du-Chat syndrome: MRI findings in 14 patients and possible genotype-phenotype correlations

    No full text
    Introduction: Cri-du-Chat Syndrome (CdCS) is a genetic condition due to deletions showing different breakpoints encompassing a critical region on the short arm of chromosome 5, located between p15.2 and p15.3, first defined by Niebuhr in 1978. The classic phenotype includes a characteristic cry, peculiar facies, microcephaly, growth retardation, hypotonia, speech and psychomotor delay and intellectual disability. A wide spectrum of clinical manifestations can be attributed to differences in size and localization of the 5p deletion. Several critical regions related to some of the main features (such as cry, peculiar facies, developmental delay) have been identified. The aim of this study is to further define the genotype-phenotype correlations in CdCS with particular regards to the specific neuroradiological findings. Patients and methods: Fourteen patients with 5p deletions have been included in the present study. Neuroimaging studies were conducted using brain Magnetic Resonance Imaging (MRI). Genetic testing was performed by means of comparative genomic hybridization (CGH) array at 130 kb resolution. Results: MRI analyses showed that isolated pontine hypoplasia is the most common finding, followed by vermian hypoplasia, ventricular anomalies, abnormal basal angle, widening of cavum sellae, increased signal of white matter, corpus callosum anomalies, and anomalies of cortical development. Chromosomal microarray analysis identified deletions ranging in size from 11,6 to 33,8 Mb on the short arm of chromosome 5. Then, we took into consideration the overlapping and non-overlapping deleted regions. The goal was to establish a correlation between the deleted segments and the neuroradiological features of our patients. Conclusions: Performing MRI on all the patients in our cohort, allowed us to expand the neuroradiological phenotype in CdCS. Moreover, possible critical regions associated to characteristic MRI findings have been identified

    Loss of tubulin deglutamylase CCP1 causes infantile-onset neurodegeneration.

    No full text
    A set of glutamylases and deglutamylases controls levels of tubulin polyglutamylation, a prominent post-translational modification of neuronal microtubules. Defective tubulin polyglutamylation was first linked to neurodegeneration in the Purkinje cell degeneration (pcd) mouse, which lacks deglutamylase CCP1, displays massive cerebellar atrophy, and accumulates abnormally glutamylated tubulin in degenerating neurons. We found biallelic rare and damaging variants in the gene encoding CCP1 in 13 individuals with infantile-onset neurodegeneration and confirmed the absence of functional CCP1 along with dysregulated tubulin polyglutamylation. The human disease mainly affected the cerebellum, spinal motor neurons, and peripheral nerves. We also demonstrate previously unrecognized peripheral nerve and spinal motor neuron degeneration in pcd mice, which thus recapitulated key features of the human disease. Our findings link human neurodegeneration to tubulin polyglutamylation, entailing this post-translational modification as a potential target for drug development for neurodegenerative disorders
    corecore