3 research outputs found

    Development of Phytocosmeceutical Microemulgel Containing Flaxseed Extract and Its In Vitro and In Vivo Characterization

    Get PDF
    Antioxidants from natural sources are extensively attaining consideration to avert the skin from damage and aging caused by free radicals. Flaxseed (Linum usitatissimum L.), a natural therapeutic agent, was meant to be explored cosmeceutical by quantifying its potential phytoconstituents and to be incorporated into a microemulgel for topical use. Hydroalcoholic fractions (both methanolic and ethanolic; 80%) flaxseed extracts were subjected to phytochemical screening by quantifying total phenolic content (TPC), total flavonoid content (TFC), and high-performance liquid chromatography-ultraviolet (HPLC-UV), and for biological activities through 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, tyrosinase inhibition assay, and sun protection factor (SPF). Ethanolic fraction was selected for further study by TPC (18.75 mg gallic acid equivalent/g) and TFC (1.34 mg quercetin equivalent/g). HPLC-UV analysis showed the existence of benzoic, quercetin, caffeic, vanillic, p-coumaric, gallic, cinnamic, syringic, and sinapic acids. Biological activities showed 87.00%, 72.00%, and 21.75 values for DPPH assay, tyrosinase inhibition, and SPF assays, respectively. An oil-in-water (OW) microemulsion containing the flaxseed extract, with 99.20 nm Zeta size, −19.3 Zeta potential and 0.434 polydispersity index was developed and incorporated in Carbopol-940 gel matrix to formulate an active microemulgel with 59.15% release in in vitro studies. The successfully formulated stable active microemulgel produced statistically significant effects (p < 0.05), in comparison to a placebo, on skin erythema, melanin, sebum, moisture, and elasticity, in a noninvasive in vivo study performed on 13 healthy human female volunteers. Other cosmeceutical products can also be formulated from flaxseed, making it a considerable candidate for further utilization in the pharmaceutical industry

    Effect of early tranexamic acid administration on mortality, hysterectomy, and other morbidities in women with post-partum haemorrhage (WOMAN): an international, randomised, double-blind, placebo-controlled trial

    Get PDF
    Background Post-partum haemorrhage is the leading cause of maternal death worldwide. Early administration of tranexamic acid reduces deaths due to bleeding in trauma patients. We aimed to assess the effects of early administration of tranexamic acid on death, hysterectomy, and other relevant outcomes in women with post-partum haemorrhage. Methods In this randomised, double-blind, placebo-controlled trial, we recruited women aged 16 years and older with a clinical diagnosis of post-partum haemorrhage after a vaginal birth or caesarean section from 193 hospitals in 21 countries. We randomly assigned women to receive either 1 g intravenous tranexamic acid or matching placebo in addition to usual care. If bleeding continued after 30 min, or stopped and restarted within 24 h of the first dose, a second dose of 1 g of tranexamic acid or placebo could be given. Patients were assigned by selection of a numbered treatment pack from a box containing eight numbered packs that were identical apart from the pack number. Participants, care givers, and those assessing outcomes were masked to allocation. We originally planned to enrol 15 000 women with a composite primary endpoint of death from all-causes or hysterectomy within 42 days of giving birth. However, during the trial it became apparent that the decision to conduct a hysterectomy was often made at the same time as randomisation. Although tranexamic acid could influence the risk of death in these cases, it could not affect the risk of hysterectomy. We therefore increased the sample size from 15 000 to 20 000 women in order to estimate the effect of tranexamic acid on the risk of death from post-partum haemorrhage. All analyses were done on an intention-to-treat basis. This trial is registered with ISRCTN76912190 (Dec 8, 2008); ClinicalTrials.gov, number NCT00872469; and PACTR201007000192283. Findings Between March, 2010, and April, 2016, 20 060 women were enrolled and randomly assigned to receive tranexamic acid (n=10 051) or placebo (n=10 009), of whom 10 036 and 9985, respectively, were included in the analysis. Death due to bleeding was significantly reduced in women given tranexamic acid (155 [1·5%] of 10 036 patients vs 191 [1·9%] of 9985 in the placebo group, risk ratio [RR] 0·81, 95% CI 0·65–1·00; p=0·045), especially in women given treatment within 3 h of giving birth (89 [1·2%] in the tranexamic acid group vs 127 [1·7%] in the placebo group, RR 0·69, 95% CI 0·52–0·91; p=0·008). All other causes of death did not differ significantly by group. Hysterectomy was not reduced with tranexamic acid (358 [3·6%] patients in the tranexamic acid group vs 351 [3·5%] in the placebo group, RR 1·02, 95% CI 0·88–1·07; p=0·84). The composite primary endpoint of death from all causes or hysterectomy was not reduced with tranexamic acid (534 [5·3%] deaths or hysterectomies in the tranexamic acid group vs 546 [5·5%] in the placebo group, RR 0·97, 95% CI 0·87-1·09; p=0·65). Adverse events (including thromboembolic events) did not differ significantly in the tranexamic acid versus placebo group. Interpretation Tranexamic acid reduces death due to bleeding in women with post-partum haemorrhage with no adverse effects. When used as a treatment for postpartum haemorrhage, tranexamic acid should be given as soon as possible after bleeding onset. Funding London School of Hygiene & Tropical Medicine, Pfizer, UK Department of Health, Wellcome Trust, and Bill & Melinda Gates Foundation

    Development of Phytocosmeceutical Microemulgel Containing Flaxseed Extract and Its In Vitro and In Vivo Characterization

    No full text
    Antioxidants from natural sources are extensively attaining consideration to avert the skin from damage and aging caused by free radicals. Flaxseed (Linum usitatissimum L.), a natural therapeutic agent, was meant to be explored cosmeceutical by quantifying its potential phytoconstituents and to be incorporated into a microemulgel for topical use. Hydroalcoholic fractions (both methanolic and ethanolic; 80%) flaxseed extracts were subjected to phytochemical screening by quantifying total phenolic content (TPC), total flavonoid content (TFC), and high-performance liquid chromatography-ultraviolet (HPLC-UV), and for biological activities through 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, tyrosinase inhibition assay, and sun protection factor (SPF). Ethanolic fraction was selected for further study by TPC (18.75 mg gallic acid equivalent/g) and TFC (1.34 mg quercetin equivalent/g). HPLC-UV analysis showed the existence of benzoic, quercetin, caffeic, vanillic, p-coumaric, gallic, cinnamic, syringic, and sinapic acids. Biological activities showed 87.00%, 72.00%, and 21.75 values for DPPH assay, tyrosinase inhibition, and SPF assays, respectively. An oil-in-water (OW) microemulsion containing the flaxseed extract, with 99.20 nm Zeta size, &minus;19.3 Zeta potential and 0.434 polydispersity index was developed and incorporated in Carbopol-940 gel matrix to formulate an active microemulgel with 59.15% release in in vitro studies. The successfully formulated stable active microemulgel produced statistically significant effects (p &lt; 0.05), in comparison to a placebo, on skin erythema, melanin, sebum, moisture, and elasticity, in a noninvasive in vivo study performed on 13 healthy human female volunteers. Other cosmeceutical products can also be formulated from flaxseed, making it a considerable candidate for further utilization in the pharmaceutical industry
    corecore