267 research outputs found

    High sensitivity Cavity Ring Down spectroscopy of 18O enriched carbon dioxide between 5850 and 7000 cm-1: Part III-Analysis and theoretical modeling of the 12C17O2, 16O12C17O, 17O12C18O, 16O13C17O and 17O13C18O spectra

    Full text link
    More than 19,700 transitions belonging to 11 isotopologues of carbon dioxide have been assigned in the room temperature absorption spectrum of highly 18O enriched carbon dioxide recorded by very high sensitivity CW-Cavity Ring Down spectroscopy between 5851 and 6990 cm-1 (1.71-1.43 \mum). This third and last report is devoted to the analysis of the bands of five 17O containing isotopologues present at very low concentration in the studied spectra: 16O12C17O, 17O12C18O, 16O13C17O, 17O13C18O and 12C17O2 (627, 728, 637, 738 and 727 in short hand notation). On the basis of the predictions of effective Hamiltonian models, a total of 1759, 1786, 335, 273 and 551 transitions belonging to 24, 24, 5, 4 and 7 bands were rovibrationally assigned for 627, 728, 637, 738 and 727, respectively. For comparison, only five bands were previously measured in the region for the 728 species. All the identified bands belong to the \deltaP=8 and 9 series of transitions, where P=2V1+V2+3V3 is the polyad number (Vi are vibrational quantum numbers). The band-by-band analysis has allowed deriving accurate spectroscopic parameters of 61 bands from a fit of the measured line positions. Two interpolyad resonance perturbations were identified

    A room temperature CO2_2 line list with ab initio computed intensities

    Get PDF
    Atmospheric carbon dioxide concentrations are being closely monitored by remote sensing experiments which rely on knowing line intensities with an uncertainty of 0.5% or better. We report a theoretical study providing rotation-vibration line intensities substantially within the required accuracy based on the use of a highly accurate {\it ab initio} dipole moment surface (DMS). The theoretical model developed is used to compute CO2_2 intensities with uncertainty estimates informed by cross comparing line lists calculated using pairs of potential energy surfaces (PES) and DMS's of similar high quality. This yields lines sensitivities which are utilized in reliability analysis of our results. The final outcome is compared to recent accurate measurements as well as the HITRAN2012 database. Transition frequencies are obtained from effective Hamiltonian calculations to produce a comprehensive line list covering all 12^{12}C16^{16}O2_2 transitions below 8000 cm1^{-1} and stronger than 1030^{-30} cm / molecule at T=296T=296~

    A room temperature CO2 line list with ab initio computed intensities

    Get PDF
    Atmospheric carbon dioxide concentrations are being closely monitored by remote sensing experiments which rely on knowing line intensities with an uncertainty of 0.5% or better. We report a theoretical study providing rotation-vibration line intensities substantially within the required accuracy based on the use of a highly accurate ab initio dipole moment surface (DMS). The theoretical model developed is used to compute CO2 intensities with uncertainty estimates informed by cross comparing line lists calculated using pairs of potential energy surfaces (PES) and DMS's of similar high quality. This yields lines sensitivities which are utilized in reliability analysis of our results. The final outcome is compared to recent accurate measurements as well as the HITRAN2012 database. Transition frequencies are obtained from effective Hamiltonian calculations to produce a comprehensive line list covering all 12C16O2 transitions below 8000cm-1 and stronger than 10-30cm/ molecule at T=296K

    Room temperature line lists for CO2 symmetric isotopologues with ab initio computed intensities

    Get PDF
    Remote sensing experiments require high-accuracy, preferably sub-percent, line intensities and in response to this need we present computed room temperature line lists for six symmetric isotopologues of carbon dioxide: 13C16O2, 14C16O2, 12C17O2, 12C18O2, 13C17O2 and 13C18O2, covering the range 0–8000 cm−1. Our calculation scheme is based on variational nuclear motion calculations and on a reliability analysis of the generated line intensities. Rotation–vibration wavefunctions and energy levels are computed using the DVR3D software suite and a high quality semi-empirical potential energy surface (PES), followed by computation of intensities using an ab initio dipole moment surface (DMS). Four line lists are computed for each isotopologue to quantify sensitivity to minor distortions of the PES/DMS. Reliable lines are benchmarked against recent state-of-the-art measurements and against the HITRAN2012 database, supporting the claim that the majority of line intensities for strong bands are predicted with sub-percent accuracy. Accurate line positions are generated using an effective Hamiltonian. We recommend the use of these line lists for future remote sensing studies and their inclusion in databases

    Ab initio effective rotational Hamiltonians - A comparative study

    Get PDF
    40 pages dont 6 tablesInternational audienceTwo independent methods to obtain ab initio effective rotational Hamiltonians have been implemented recently. The first one is based on a generalization of perturbation theory to non-commutative rings, the other one on contact transformation techniques. In principle, both methods are able to give rotational Hamiltonians including centrugal distortion effects of arbitrary high orders. These methods are compared for the first time in this article with regard to calculations of the rotational levels of methane vibrational ground state

    The Absorption Spectrum of Nitrous Oxide between 8325 and 8622 cm−1

    Full text link
    The weak high-resolution absorption spectrum of natural nitrous oxide has been recorded by high sensitivity cavity ring down spectroscopy (CRDS) near 1.18 µm. The frequency scale of the spectra was obtained by coupling the CRDS spectrometer to a self-referenced frequency comb. The room temperature recordings, performed with a pressure of 1 Torr, cover the 8325-8622 cm−1 spectral interval where previous observations were very scarce. More than 3300 lines belonging to four N2O isotopologues (14N216O, 14N15N16O, 15N14N16O, and 14N218O) are measured with a position accuracy better than 1 × 10−3 cm−1 for most of the lines. Line intensities at room temperature range between 1.2 × 10−25 and 3.8 × 10−30 cm/molecule. The rovibrational assignments were obtained by comparison with predictions based on the global modeling of the line positions and intensities performed within the framework of the method of effective operators. The band-by-band analysis led to the determination of the rovibrational parameters of a total of 47 bands. All identified bands belong to the ΔP= 14-16 series of transitions, where P=2V1+V2+4V3 is the polyad number (Vi= 1-3 are the vibrational quantum numbers). Among these bands, only five were previously observed and bands of the ΔP= 15 series are reported for the first time. Local resonance perturbations affecting two bands are identified and analyzed. The position and intensity comparisons to the HITRAN2016 and HITEMP2019 spectroscopic databases are discussed. The HITRAN line list is limited to only four (calculated) bands of the 14N218O isotopologue in the studied region while ΔP= 15 bands are missing in the HITEMP list. The present work will help to improve future versions of the spectroscopic databases of nitrous oxide, a strong greenhouse gas. © 2021 Elsevier LtdThis work is jointly supported by CNRS (France) in the frame of the International Research Project “ SAMIA ” with IAO-Tomsk
    corecore