69 research outputs found

    Genome Sequences of Listeria monocytogenes Strains Responsible for Cheese- and Cooked Ham Product-Associated Swiss Listeriosis Outbreaks in 2005 and 2011.

    Get PDF
    The complete genome sequences of three Listeria monocytogenes serotype 1/2a strains, Lm 3136, Lm 3163, and Lm N1546, which were responsible for listeriosis outbreaks in 2005 and 2011 in Switzerland, are presented here

    Comparative genomics of dairy-associated Staphylococcus aureus from selected sub-Saharan African regions reveals milk as reservoir for human-and animal-derived strains and identifies a putative animal-related clade with presumptive novel siderophore

    Full text link
    Staphylococcus aureus infection is considered to be a neglected tropical disease with huge impact on human and animal health alike. Dairy production in sub-Saharan Africa (SSA) relies heavily on various animals such as cows, goats, and camels, depending on the region. S. aureus causes mastitis and exhibits high prevalence in raw milk. The population structure including genotypic and phenotypic traits of dairy S. aureus in relation to animal and human isolates is, however, unknown for SSA. In this work, 20 S. aureus dairy isolates from East and West Africa were selected for comparative genomics and phenotypic analysis. Comparing their population structure revealed a large diversity of different origins suggesting milk to be a reservoir for human and animal strains alike. Furthermore, a novel putative siderophore was detected in multiple strains in a distinct animal-clade with strains of global origin. This putative siderophore shares a high genetic identity with that from Streptococcus equi suggesting possible horizontal gene transfer. These findings combined with the virulence genes harbored by these dairy-derived strains such as pvl, human evasion factor scn, various enterotoxin, leucocidin and antibiotic resistance genes, stresses the need for an integrative One Health approach to tackle the problem of S. aureus infections in animals and humans in sub-Saharan Africa

    Deciphering the global roles of Cold shock proteins in Listeria monocytogenes nutrient metabolism and stress tolerance

    Full text link
    Listeria monocytogenes (Lm) accounts for serious public health and food safety problems owing to its stress resilience and pathogenicity. Based on their regulatory involvement in global gene expression events, cold-shock domain family proteins (Csps) are crucial in expression of various stress fitness and virulence phenotypes in bacteria. Lm possesses three Csps (CspA, CspB, and CspD) whose regulatory roles in the context of the genetic diversity of this bacterium are not yet fully understood. We examined the impacts of Csps deficiency on Lm nutrient metabolism and stress tolerance using a set of csp deletion mutants generated in different genetic backgrounds. Phenotype microarrays (PM) analysis showed that the absence of Csps in ∆cspABD reduces carbon (C-) source utilization capacity and increases Lm sensitivity to osmotic, pH, various chemical, and antimicrobial stress conditions. Single and double csp deletion mutants in different Lm genetic backgrounds were used to further dissect the roles of individual Csps in these phenotypes. Selected PM-based observations were further corroborated through targeted phenotypic assays, confirming that Csps are crucial in Lm for optimal utilization of various C-sources including rhamnose and glucose as well as tolerance against NaCl, β-phenyethylamine (PEA), and food relevant detergent stress conditions. Strain and genetic lineage background-based differences, division of labour, epistasis, and functional redundancies among the Csps were uncovered with respect to their roles in various processes including C-source utilization, cold, and PEA stress resistance. Finally, targeted transcriptome analysis was performed, revealing the activation of csp gene expression under defined stress conditions and the impact of Csps on expression regulation of selected rhamnose utilization genes. Overall, our study shows that Csps play important roles in nutrient utilization and stress responses in Lm strains, contributing to traits that are central to the public health and food safety impacts of this pathogen

    Different Shades of Listeria monocytogenes: Strain, Serotype, and Lineage-Based Variability in Virulence and Stress Tolerance Profiles

    Full text link
    Listeria monocytogenes is a public health and food safety challenge due to its virulence and natural stress resistance phenotypes. The variable distribution of L. monocytogenes molecular subtypes with respect to food products and processing environments and among human and animal clinical listeriosis cases is observed. Sixty-two clinical and food-associated L. monocytogenes isolates were examined through phenome and genome analysis. Virulence assessed using a zebrafish infection model revealed serotype and genotype-specific differences in pathogenicity. Strains of genetic lineage I serotype 4b and multilocus sequence type clonal complexes CC1, CC2, CC4, and CC6 grew and survived better and were more virulent than serotype 1/2a and 1/2c lineage II, CC8, and CC9 strains. Hemolysis, phospholipase activity, and lysozyme tolerance profiles were associated with the differences observed in virulence. Osmotic stress resistance evaluation revealed serotype 4b lineage I CC2 and CC4 strains as more osmotolerant, whereas serotype 1/2c lineage II CC9 strains were more osmo-sensitive than others. Variable tolerance to the widely used quaternary ammonium compound benzalkonium chloride (BC) was observed. Some outbreak and sporadic clinical case associated strains demonstrated BC tolerance, which might have contributed to their survival and transition in the food-processing environment facilitating food product contamination and ultimately outbreaks or sporadic listeriosis cases. Genome comparison uncovered various moderate differences in virulence and stress associated genes between the strains indicating that these differences in addition to gene expression regulation variations might largely be responsible for the observed virulence and stress sensitivity phenotypic differences. Overall, our study uncovered strain and genotype-dependent variation in virulence and stress resilience among clinical and food-associated L. monocytogenes isolates with potential public health risk implications. The extensive genome and phenotypic data generated provide a basis for developing improved Listeria control strategies and policies

    Nitrite stress increases staphylococcal enterotoxin C transcription and triggers the SigB regulon

    Full text link
    Staphylococcal food poisoning is a common food intoxication caused by staphylococcal enterotoxins. While growth of Staphylococcus aureus is not inhibited by the meat-curing agent nitrite, we hypothesize that nitrite has an influence on enterotoxin C (SEC) expression. We investigated the influence of 150 mg/l nitrite on SEC expression at mRNA and protein level in seven strains expressing different SEC variants. Additionally, regulatory knockout mutants (Δagr, ΔsarA, and ΔsigB) of high SEC producing strain SAI48 were investigated at mRNA level. Our findings suggest that nitrite effectively increases sec mRNA transcription, but the effects on SEC protein expression are less pronounced. While Δagr mutants exhibited lower sec mRNA transcription levels than wildtype strains, this response was not stress specific. ΔsigB mutants displayed a nitrite stress-specific response. Whole genome sequencing of the strains revealed a defective agr element in one strain (SAI3). In this strain, sec transcription and SEC protein synthesis was not affected by the mutation. Consequently, additional regulatory networks must be at play in SEC expression. Comparison of our findings about SEC with previous experiments on SEB and SED suggest that each SE can respond differently, and that the same stressor can trigger opposing responses in strains that express multiple toxins

    The Analysis of Field Strains Isolated From Food, Animal and Clinical Sources Uncovers Natural Mutations in Listeria monocytogenes Nisin Resistance Genes

    Get PDF
    Nisin is a commonly used bacteriocin for controlling spoilage and pathogenic bacteria in food products. Strains possessing high natural nisin resistance that reduce or increase the potency of this bacteriocin against Listeria monocytogenes have been described. Our study sought to gather more insights into nisin resistance mechanisms in natural L. monocytogenes populations by examining a collection of 356 field strains that were isolated from different foods, food production environments, animals and human infections. A growth curve analysis-based approach was used to access nisin inhibition levels and assign the L. monocytogenes strains into three nisin response phenotypic categories; resistant (66%), intermediate (26%), and sensitive (8%). Using this categorization isolation source, serotype, genetic lineage, clonal complex (CC) and strain-dependent natural variation in nisin phenotypic resistance among L. monocytogenes field strains was revealed. Whole genome sequence analysis and comparison of high nisin resistant and sensitive strains led to the identification of new naturally occurring mutations in nisin response genes associated with increased nisin resistance and sensitivity in this bacterium. Increased nisin resistance was detected in strains harboring RsbUG77S and PBPB3V240F amino acid substitution mutations, which also showed increased detergent stress resistance as well as increased virulence in a zebra fish infection model. On the other hand, increased natural nisin sensitivity was detected among strains with mutations in sigB, vir, and dlt operons that also showed increased lysozyme sensitivity and lower virulence. Overall, our study identified naturally selected mutations involving pbpB3 (lm0441) as well as sigB, vir, and dlt operon genes that are associated with intrinsic nisin resistance in L. monocytogenes field strains recovered from various food and human associated sources. Finally, we show that combining growth parameter-based phenotypic analysis and genome sequencing is an effective approach that can be useful for the identification of novel nisin response associated genetic variants among L. monocytogenes field strains.Peer reviewe

    Enumeration of Mycobacterium avium subsp. paratuberculosis by quantitative real-time PCR, culture on solid media and optical densitometry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Different approaches are used for determining the number of <it>Mycobacterium avium </it>subsp. <it>paratuberculosis </it>(MAP) cells in a suspension. The majority of them are based upon culture (determination of CFU) or visual/instrumental direct counting of MAP cells. In this study, we have compared the culture method with a previously published F57 based quantitative real-time PCR (F57qPCR) method, to determine their relative abilities to count the number of three different MAP isolates in suspensions with the same optical densities (OD). McFarland turbidity standards were also compared with F57qPCR and culture, due to its frequent inclusion and use in MAP studies.</p> <p>Findings</p> <p>The numbers of MAP in two-fold serial dilutions of isolates with respective OD measurements were determined by F57qPCR and culture. It was found that culture provided lower MAP CFU counts by approximately two log<sub>10</sub>, compared to F57qPCR. The McFarland standards (as defined for <it>E. coli</it>) showed an almost perfect fit with the enumeration of MAP performed by F57qPCR.</p> <p>Conclusions</p> <p>It is recommended to use culture and/or qPCR estimations of MAP numbers in experiments where all subsequent counts are performed using the same method. It is certainly not recommended the use of culture as the standard for qPCR experiments and <it>vice versa</it>.</p
    corecore