346 research outputs found
Gravitational Wave Background from Neutrino-Driven Gamma-Ray Bursts
We discuss the gravitational wave background (GWB) from a cosmological
population of gamma-ray bursts (GRBs). Among various emission mechanisms for
the gravitational waves (GWs), we pay a particular attention to the vast
anisotropic neutrino emissions from the accretion disk around the black hole
formed after the so-called failed supernova explosions. The produced GWs by
such mechanism are known as burst with memory, which could dominate over the
low-frequency regime below \sim 10Hz. To estimate their amplitudes, we derive
general analytic formulae for gravitational waveform from the axisymmetric
jets. Based on the formulae, we first quantify the spectrum of GWs from a
single GRB. Then, summing up its cosmological population, we find that the
resultant value of the density parameter becomes roughly \Omega_{GW} \approx
10^{-20} over the wide-band of the low-frequency region, f\sim 10^{-4}-10^1Hz.
The amplitude of GWB is sufficiently smaller than the primordial GWBs
originated from an inflationary epoch and far below the detection limit.Comment: 6 pages, 4 figures, accepted for publication in MNRA
Magnification effect on the detection of primordial non-Gaussianity from photometric surveys
We present forecast results for constraining the primordial non-Gaussianity
from photometric surveys through a large-scale enhancement of the galaxy
clustering amplitude. In photometric surveys, the distribution of observed
galaxies at high redshifts suffers from the gravitational-lensing
magnification, which systematically alters the number density for
magnitude-limited galaxy samples. We estimate size of the systematic bias in
the best-fit cosmological parameters caused by the magnification effect,
particularly focusing on the primordial non-Gaussianity. For upcoming deep
and/or wide photometric surveys like HSC, DES and LSST, the best-fit value of
the non-Gaussian parameter, fNL, obtained from the galaxy count data is highly
biased, and the true values of fNL would typically go outside the 3-sigma error
of the biased confidence region, if we ignore the magnification effect in the
theoretical template of angular power spectrum. The additional information from
cosmic shear data helps not only to improve the constraint, but also to reduce
the systematic bias. As a result, the size of systematic bias on fNL would
become small enough compared to the expected 1-sigma error for HSC and DES, but
it would be still serious for deep surveys with z_m > 1.5, like LSST.
Tomographic technique improves the constraint on fNL by a factor of 2-3
compared to the one without tomography, but the systematic bias would increase.Comment: 12 pages, 10 figure
A Closure Theory for Non-linear Evolution of Cosmological Power Spectra
We apply a non-linear statistical method in turbulence to the cosmological
perturbation theory and derive a closed set of evolution equations for matter
power spectra. The resultant closure equations consistently recover the
one-loop results of standard perturbation theory and beyond that, it is still
capable of treating the non-linear evolution of matter power spectra. We find
the exact integral expressions for the solutions of closure equations. These
analytic expressions coincide with the renormalized one-loop results presented
by Crocce & Scoccimarro (2006,2007). By constructing the non-linear propagator,
we analytically evaluate the non-linear matter power spectra based on the
first-order Born approximation of the integral expressions and compare it with
those of the renormalized perturbation theory.Comment: 22 pages, 4 figures, accepted for publication in Ap
Non-linear Evolution of Matter Power Spectrum in Modified Theory of Gravity
We present a formalism to calculate the non-linear matter power spectrum in
modified gravity models that explain the late-time acceleration of the Universe
without dark energy. Any successful modified gravity models should contain a
mechanism to recover General Relativity (GR) on small scales in order to avoid
the stringent constrains on deviations from GR at solar system scales. Based on
our formalism, the quasi non-linear power spectrum in the
Dvali-Gabadadze-Porratti (DGP) braneworld models and gravity models are
derived by taking into account the mechanism to recover GR properly. We also
extrapolate our predictions to fully non-linear scales using the Parametrized
Post Friedmann (PPF) framework. In gravity models, the predicted
non-linear power spectrum is shown to reproduce N-body results. We find that
the mechanism to recover GR suppresses the difference between the modified
gravity models and dark energy models with the same expansion history, but the
difference remains large at weakly non-linear regime in these models. Our
formalism is applicable to a wide variety of modified gravity models and it is
ready to use once consistent models for modified gravity are developed.Comment: 25 pages, 8 figures, comparison to N-body simulations in DGP added,
published in PR
RegPT: Direct and fast calculation of regularized cosmological power spectrum at two-loop order
We present a specific prescription for the calculation of cosmological power
spectra, exploited here at two-loop order in perturbation theory (PT), based on
the multi-point propagator expansion. In this approach power spectra are
constructed from the regularized expressions of the propagators that reproduce
both the resummed behavior in the high-k limit and the standard PT results at
low-k. With the help of N-body simulations, we show that such a construction
gives robust and accurate predictions for both the density power spectrum and
the correlation function at percent-level in the weakly non-linear regime. We
then present an algorithm that allows accelerated evaluations of all the
required diagrams by reducing the computational tasks to one-dimensional
integrals. This is achieved by means of pre-computed kernel sets defined for
appropriately chosen fiducial models. The computational time for two-loop
results is then reduced from a few minutes, with the direct method, to a few
seconds with the fast one. The robustness and applicability of this method are
tested against the power spectrum cosmic emulator from which a wide variety of
cosmological models can be explored. The fortran program with which direct and
fast calculations of power spectra can be done, RegPT, is publicly released as
part of this paper.Comment: 28 pages, 15 figure
Stochastic Biasing and Weakly Non-linear Evolution of Power Spectrum
Distribution of galaxies may be a biased tracer of the dark matter
distribution and the relation between the galaxies and the total mass may be
stochastic, non-linear and time-dependent. Since many observations of galaxy
clustering will be done at high redshift, the time evolution of non-linear
stochastic biasing would play a crucial role for the data analysis of the
future sky surveys. In this paper, we develop the weakly non-linear analysis
and attempt to clarify the non-linear feature of the stochastic biasing. We
compute the one-loop correction of the power spectrum for the total mass, the
galaxies and their cross correlation. Assuming the local functional form for
the initial galaxy distribution, we investigate the time evolution of the
biasing parameter and the correlation coefficient. On large scales, we first
find that the time evolution of the biasing parameter could deviate from the
linear prediction in presence of the initial skewness. However, the deviation
can be reduced when the initial stochasticity exists. Next, we focus on the
quasi-linear scales, where the non-linear growth of the total mass becomes
important. It is recognized that the scale-dependence of the biasing
dynamically appears and the initial stochasticity could affect the time
evolution of the scale-dependence. The result is compared with the recent
N-body simulation that the scale-dependence of the halo biasing can appear on
relatively large scales and the biasing parameter takes the lower value on
smaller scales. Qualitatively, our weakly non-linear results can explain this
trend if the halo-mass biasing relation has the large scatter at high redshift.Comment: 29pages, 7 postscript figures, submitted to Ap
Next-to-leading resummation of cosmological perturbations via the Lagrangian picture: 2-loop correction in real and redshift spaces
We present an improved prediction of the nonlinear perturbation theory (PT)
via the Lagrangian picture, which was originally proposed by Matsubara (2008).
Based on the relations between the power spectrum in standard PT and that in
Lagrangian PT, we derive analytic expressions for the power spectrum in
Lagrangian PT up to 2-loop order in both real and redshift spaces. Comparing
the improved prediction of Lagrangian PT with -body simulations in real
space, we find that the 2-loop corrections can extend the valid range of wave
numbers where we can predict the power spectrum within 1% accuracy by a factor
of 1.0 (), 1.3 (1), 1.6 (2) and 1.8 (3) vied with 1-loop Lagrangian PT
results. On the other hand, in all redshift ranges, the higher-order
corrections are shown to be less significant on the two-point correlation
functions around the baryon acoustic peak, because the 1-loop Lagrangian PT is
already accurate enough to explain the nonlinearity on those scales in -body
simulations.Comment: 18pages, 4 figure
Non-linear Evolution of Baryon Acoustic Oscillations from Improved Perturbation Theory in Real and Redshift Spaces
We study the non-linear evolution of baryon acoustic oscillations in the
matter power spectrum and correlation function from the improved perturbation
theory (PT). Based on the framework of renormalized PT, we apply the {\it
closure approximation} that truncates the infinite series of loop contributions
at one-loop order, and obtain a closed set of integral equations for power
spectrum and non-linear propagator. The resultant integral expressions keep
important non-perturbative properties which can dramatically improve the
prediction of non-linear power spectrum. Employing the Born approximation, we
then derive the analytic expressions for non-linear power spectrum and the
predictions are made for non-linear evolution of baryon acoustic oscillations
in power spectrum and correlation function. A detailed comparison between
improved PT results and N-body simulations shows that a percent-level agreement
is achieved in a certain range in power spectrum and in a rather wider range in
correlation function. Combining a model of non-linear redshift-space
distortion, we also evaluate the power spectrum and correlation function in
correlation function. In contrast to the results in real space, the agreement
between N-body simulations and improved PT predictions tends to be worse, and a
more elaborate modeling for redshift-space distortion needs to be developed.
Nevertheless, with currently existing model, we find that the prediction of
correlation function has a sufficient accuracy compared with the
cosmic-variance errors for future galaxy surveys with volume of a few (Gpc/h)^3
at z>=0.5.Comment: 25 pages, 15 figures, accepted for publication in Phys.Rev.
Nonlinear stochastic biasing from the formation epoch distribution of dark halos
We propose a physical model for nonlinear stochastic biasing of one-point
statistics resulting from the formation epoch distribution of dark halos. In
contrast to previous works on the basis of extensive numerical simulations, our
model provides for the first time an analytic expression for the joint
probability function. Specifically we derive the joint probability function of
halo and mass density contrasts from the extended Press-Schechter theory. Since
this function is derived in the framework of the standard gravitational
instability theory assuming the random-Gaussianity of the primordial density
field alone, we expect that the basic features of the nonlinear and stochastic
biasing predicted from our model are fairly generic. As representative
examples, we compute the various biasing parameters in cold dark matter models
as a function of a redshift and a smoothing length. Our major findings are (1)
the biasing of the variance evolves strongly as redshift while its
scale-dependence is generally weak and a simple linear biasing model provides a
reasonable approximation roughly at R\simgt 2(1+z)\himpc, and (2) the
stochasticity exhibits moderate scale-dependence especially on R\simlt
20\himpc, but is almost independent of . Comparison with the previous
numerical simulations shows good agreement with the above behavior, indicating
that the nonlinear and stochastic nature of the halo biasing is essentially
understood by taking account of the distribution of the halo mass and the
formation epoch.Comment: 34 pages, 11 figures, ApJ (2000) in pres
- …