346 research outputs found

    Gravitational Wave Background from Neutrino-Driven Gamma-Ray Bursts

    Full text link
    We discuss the gravitational wave background (GWB) from a cosmological population of gamma-ray bursts (GRBs). Among various emission mechanisms for the gravitational waves (GWs), we pay a particular attention to the vast anisotropic neutrino emissions from the accretion disk around the black hole formed after the so-called failed supernova explosions. The produced GWs by such mechanism are known as burst with memory, which could dominate over the low-frequency regime below \sim 10Hz. To estimate their amplitudes, we derive general analytic formulae for gravitational waveform from the axisymmetric jets. Based on the formulae, we first quantify the spectrum of GWs from a single GRB. Then, summing up its cosmological population, we find that the resultant value of the density parameter becomes roughly \Omega_{GW} \approx 10^{-20} over the wide-band of the low-frequency region, f\sim 10^{-4}-10^1Hz. The amplitude of GWB is sufficiently smaller than the primordial GWBs originated from an inflationary epoch and far below the detection limit.Comment: 6 pages, 4 figures, accepted for publication in MNRA

    Magnification effect on the detection of primordial non-Gaussianity from photometric surveys

    Full text link
    We present forecast results for constraining the primordial non-Gaussianity from photometric surveys through a large-scale enhancement of the galaxy clustering amplitude. In photometric surveys, the distribution of observed galaxies at high redshifts suffers from the gravitational-lensing magnification, which systematically alters the number density for magnitude-limited galaxy samples. We estimate size of the systematic bias in the best-fit cosmological parameters caused by the magnification effect, particularly focusing on the primordial non-Gaussianity. For upcoming deep and/or wide photometric surveys like HSC, DES and LSST, the best-fit value of the non-Gaussian parameter, fNL, obtained from the galaxy count data is highly biased, and the true values of fNL would typically go outside the 3-sigma error of the biased confidence region, if we ignore the magnification effect in the theoretical template of angular power spectrum. The additional information from cosmic shear data helps not only to improve the constraint, but also to reduce the systematic bias. As a result, the size of systematic bias on fNL would become small enough compared to the expected 1-sigma error for HSC and DES, but it would be still serious for deep surveys with z_m > 1.5, like LSST. Tomographic technique improves the constraint on fNL by a factor of 2-3 compared to the one without tomography, but the systematic bias would increase.Comment: 12 pages, 10 figure

    A Closure Theory for Non-linear Evolution of Cosmological Power Spectra

    Full text link
    We apply a non-linear statistical method in turbulence to the cosmological perturbation theory and derive a closed set of evolution equations for matter power spectra. The resultant closure equations consistently recover the one-loop results of standard perturbation theory and beyond that, it is still capable of treating the non-linear evolution of matter power spectra. We find the exact integral expressions for the solutions of closure equations. These analytic expressions coincide with the renormalized one-loop results presented by Crocce & Scoccimarro (2006,2007). By constructing the non-linear propagator, we analytically evaluate the non-linear matter power spectra based on the first-order Born approximation of the integral expressions and compare it with those of the renormalized perturbation theory.Comment: 22 pages, 4 figures, accepted for publication in Ap

    Non-linear Evolution of Matter Power Spectrum in Modified Theory of Gravity

    Get PDF
    We present a formalism to calculate the non-linear matter power spectrum in modified gravity models that explain the late-time acceleration of the Universe without dark energy. Any successful modified gravity models should contain a mechanism to recover General Relativity (GR) on small scales in order to avoid the stringent constrains on deviations from GR at solar system scales. Based on our formalism, the quasi non-linear power spectrum in the Dvali-Gabadadze-Porratti (DGP) braneworld models and f(R)f(R) gravity models are derived by taking into account the mechanism to recover GR properly. We also extrapolate our predictions to fully non-linear scales using the Parametrized Post Friedmann (PPF) framework. In f(R)f(R) gravity models, the predicted non-linear power spectrum is shown to reproduce N-body results. We find that the mechanism to recover GR suppresses the difference between the modified gravity models and dark energy models with the same expansion history, but the difference remains large at weakly non-linear regime in these models. Our formalism is applicable to a wide variety of modified gravity models and it is ready to use once consistent models for modified gravity are developed.Comment: 25 pages, 8 figures, comparison to N-body simulations in DGP added, published in PR

    RegPT: Direct and fast calculation of regularized cosmological power spectrum at two-loop order

    Full text link
    We present a specific prescription for the calculation of cosmological power spectra, exploited here at two-loop order in perturbation theory (PT), based on the multi-point propagator expansion. In this approach power spectra are constructed from the regularized expressions of the propagators that reproduce both the resummed behavior in the high-k limit and the standard PT results at low-k. With the help of N-body simulations, we show that such a construction gives robust and accurate predictions for both the density power spectrum and the correlation function at percent-level in the weakly non-linear regime. We then present an algorithm that allows accelerated evaluations of all the required diagrams by reducing the computational tasks to one-dimensional integrals. This is achieved by means of pre-computed kernel sets defined for appropriately chosen fiducial models. The computational time for two-loop results is then reduced from a few minutes, with the direct method, to a few seconds with the fast one. The robustness and applicability of this method are tested against the power spectrum cosmic emulator from which a wide variety of cosmological models can be explored. The fortran program with which direct and fast calculations of power spectra can be done, RegPT, is publicly released as part of this paper.Comment: 28 pages, 15 figure

    Stochastic Biasing and Weakly Non-linear Evolution of Power Spectrum

    Get PDF
    Distribution of galaxies may be a biased tracer of the dark matter distribution and the relation between the galaxies and the total mass may be stochastic, non-linear and time-dependent. Since many observations of galaxy clustering will be done at high redshift, the time evolution of non-linear stochastic biasing would play a crucial role for the data analysis of the future sky surveys. In this paper, we develop the weakly non-linear analysis and attempt to clarify the non-linear feature of the stochastic biasing. We compute the one-loop correction of the power spectrum for the total mass, the galaxies and their cross correlation. Assuming the local functional form for the initial galaxy distribution, we investigate the time evolution of the biasing parameter and the correlation coefficient. On large scales, we first find that the time evolution of the biasing parameter could deviate from the linear prediction in presence of the initial skewness. However, the deviation can be reduced when the initial stochasticity exists. Next, we focus on the quasi-linear scales, where the non-linear growth of the total mass becomes important. It is recognized that the scale-dependence of the biasing dynamically appears and the initial stochasticity could affect the time evolution of the scale-dependence. The result is compared with the recent N-body simulation that the scale-dependence of the halo biasing can appear on relatively large scales and the biasing parameter takes the lower value on smaller scales. Qualitatively, our weakly non-linear results can explain this trend if the halo-mass biasing relation has the large scatter at high redshift.Comment: 29pages, 7 postscript figures, submitted to Ap

    Next-to-leading resummation of cosmological perturbations via the Lagrangian picture: 2-loop correction in real and redshift spaces

    Full text link
    We present an improved prediction of the nonlinear perturbation theory (PT) via the Lagrangian picture, which was originally proposed by Matsubara (2008). Based on the relations between the power spectrum in standard PT and that in Lagrangian PT, we derive analytic expressions for the power spectrum in Lagrangian PT up to 2-loop order in both real and redshift spaces. Comparing the improved prediction of Lagrangian PT with NN-body simulations in real space, we find that the 2-loop corrections can extend the valid range of wave numbers where we can predict the power spectrum within 1% accuracy by a factor of 1.0 (z=0.5z=0.5), 1.3 (1), 1.6 (2) and 1.8 (3) vied with 1-loop Lagrangian PT results. On the other hand, in all redshift ranges, the higher-order corrections are shown to be less significant on the two-point correlation functions around the baryon acoustic peak, because the 1-loop Lagrangian PT is already accurate enough to explain the nonlinearity on those scales in NN-body simulations.Comment: 18pages, 4 figure

    Non-linear Evolution of Baryon Acoustic Oscillations from Improved Perturbation Theory in Real and Redshift Spaces

    Get PDF
    We study the non-linear evolution of baryon acoustic oscillations in the matter power spectrum and correlation function from the improved perturbation theory (PT). Based on the framework of renormalized PT, we apply the {\it closure approximation} that truncates the infinite series of loop contributions at one-loop order, and obtain a closed set of integral equations for power spectrum and non-linear propagator. The resultant integral expressions keep important non-perturbative properties which can dramatically improve the prediction of non-linear power spectrum. Employing the Born approximation, we then derive the analytic expressions for non-linear power spectrum and the predictions are made for non-linear evolution of baryon acoustic oscillations in power spectrum and correlation function. A detailed comparison between improved PT results and N-body simulations shows that a percent-level agreement is achieved in a certain range in power spectrum and in a rather wider range in correlation function. Combining a model of non-linear redshift-space distortion, we also evaluate the power spectrum and correlation function in correlation function. In contrast to the results in real space, the agreement between N-body simulations and improved PT predictions tends to be worse, and a more elaborate modeling for redshift-space distortion needs to be developed. Nevertheless, with currently existing model, we find that the prediction of correlation function has a sufficient accuracy compared with the cosmic-variance errors for future galaxy surveys with volume of a few (Gpc/h)^3 at z>=0.5.Comment: 25 pages, 15 figures, accepted for publication in Phys.Rev.

    Nonlinear stochastic biasing from the formation epoch distribution of dark halos

    Get PDF
    We propose a physical model for nonlinear stochastic biasing of one-point statistics resulting from the formation epoch distribution of dark halos. In contrast to previous works on the basis of extensive numerical simulations, our model provides for the first time an analytic expression for the joint probability function. Specifically we derive the joint probability function of halo and mass density contrasts from the extended Press-Schechter theory. Since this function is derived in the framework of the standard gravitational instability theory assuming the random-Gaussianity of the primordial density field alone, we expect that the basic features of the nonlinear and stochastic biasing predicted from our model are fairly generic. As representative examples, we compute the various biasing parameters in cold dark matter models as a function of a redshift and a smoothing length. Our major findings are (1) the biasing of the variance evolves strongly as redshift while its scale-dependence is generally weak and a simple linear biasing model provides a reasonable approximation roughly at R\simgt 2(1+z)\himpc, and (2) the stochasticity exhibits moderate scale-dependence especially on R\simlt 20\himpc, but is almost independent of zz. Comparison with the previous numerical simulations shows good agreement with the above behavior, indicating that the nonlinear and stochastic nature of the halo biasing is essentially understood by taking account of the distribution of the halo mass and the formation epoch.Comment: 34 pages, 11 figures, ApJ (2000) in pres
    corecore