22 research outputs found
Recommended from our members
Genomic agonism and phenotypic antagonism between estrogen and progesterone receptors in breast cancer
The functional role of progesterone receptor (PR) and its impact on estrogen signaling in breast cancer remain controversial. In primary ER+ (estrogen receptor-positive)/PR+ human tumors, we report that PR reprograms estrogen signaling as a genomic agonist and a phenotypic antagonist. In isolation, estrogen and progestin act as genomic agonists by regulating the expression of common target genes in similar directions, but at different levels. Similarly, in isolation, progestin is also a weak phenotypic agonist of estrogen action. However, in the presence of both hormones, progestin behaves as a phenotypic estrogen antagonist. PR remodels nucleosomes to noncompetitively redirect ER genomic binding to distal enhancers enriched for BRCA1 binding motifs and sites that link PR and ER/PR complexes. When both hormones are present, progestin modulates estrogen action, such that responsive transcriptomes, cellular processes, and ER/PR recruitment to genomic sites correlate with those observedwith PR alone, but not ER alone. Despite this overall correlation, the transcriptome patterns modulated by dual treatment are sufficiently different from individual treatments, such that antagonism of oncogenic processes is both predicted and observed. Combination therapies using the selective PRmodulator/antagonist (SPRM) CDB4124 in combination with tamoxifen elicited 70% cytotoxic tumor regression of T47D tumor xenografts, whereas individual therapies inhibited tumor growth without net regression. Our findings demonstrate that PR redirects ER chromatin binding to antagonize estrogen signaling and that SPRMs can potentiate responses to antiestrogens, suggesting that cotargeting of ER and PR in ER+/PR+ breast cancers should be explored
Progesterone receptor modulates ERα action in breast cancer.
Progesterone receptor (PR) expression is used as a biomarker of oestrogen receptor-α (ERα) function and breast cancer prognosis. Here we show that PR is not merely an ERα-induced gene target, but is also an ERα-associated protein that modulates its behaviour. In the presence of agonist ligands, PR associates with ERα to direct ERα chromatin binding events within breast cancer cells, resulting in a unique gene expression programme that is associated with good clinical outcome. Progesterone inhibited oestrogen-mediated growth of ERα(+) cell line xenografts and primary ERα(+) breast tumour explants, and had increased anti-proliferative effects when coupled with an ERα antagonist. Copy number loss of PGR, the gene coding for PR, is a common feature in ERα(+) breast cancers, explaining lower PR levels in a subset of cases. Our findings indicate that PR functions as a molecular rheostat to control ERα chromatin binding and transcriptional activity, which has important implications for prognosis and therapeutic interventions.We would like to acknowledge the support of the University of Cambridge, Cancer Research UK and Hutchison Whampoa Limited. Research reported in this manuscript was supported by the National Cancer Institute of the National Institutes of Health under award number 5P30CA142543 (to UT Southwestern) and Department of Defense grants W81XWH-12-1-0288-03 (GVR). W.D.T. is supported by grants from the National Health and Medical Research Council of Australia (ID 1008349; ID 1084416) and Cancer Australia (ID 627229) T.E.H held a Fellowship Award from the US Department of Defense Breast Cancer Research Program (BCRP; #W81XWH-11-1-0592) and currently is supported by a Florey Fellowship from the Royal Adelaide Hospital Research Foundation. J.S.C is supported by an ERC starting grant and an EMBO Young investigator award.This is the accepted manuscript. The final version is available at www.nature.com/nature/journal/v523/n7560/full/nature14583.htm
Novel Androgen Receptor Coregulator GRHL2 Exerts Both Oncogenic and Antimetastatic Functions in Prostate Cancer.
Alteration to the expression and activity of androgen receptor (AR) coregulators in prostate cancer is an important mechanism driving disease progression and therapy resistance. Using a novel proteomic technique, we identified a new AR coregulator, the transcription factor Grainyhead-like 2 (GRHL2), and demonstrated its essential role in the oncogenic AR signaling axis. GRHL2 colocalized with AR in prostate tumors and was frequently amplified and upregulated in prostate cancer. Importantly, GRHL2 maintained AR expression in multiple prostate cancer model systems, was required for cell proliferation, enhanced AR's transcriptional activity, and colocated with AR at specific sites on chromatin to regulate genes relevant to disease progression. GRHL2 is itself an AR-regulated gene, creating a positive feedback loop between the two factors. The link between GRHL2 and AR also applied to constitutively active truncated AR variants (ARV), as GRHL2 interacted with and regulated ARVs and vice versa. These oncogenic functions of GRHL2 were counterbalanced by its ability to suppress epithelial-mesenchymal transition and cell invasion. Mechanistic evidence suggested that AR assisted GRHL2 in maintaining the epithelial phenotype. In summary, this study has identified a new AR coregulator with a multifaceted role in prostate cancer, functioning as an enhancer of the oncogenic AR signaling pathway but also as a suppressor of metastasis-related phenotypes. Cancer Res; 77(13); 3417-30. ©2017 AACR
Dysregulated fibronectin trafficking by Hsp90 inhibition restricts prostate cancer cell invasion
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.The molecular chaperone Hsp90 is overexpressed in prostate cancer (PCa) and is responsible for the folding, stabilization and maturation of multiple oncoproteins, which are implicated in PCa progression. Compared to first-in-class Hsp90 inhibitors such as 17-allylamino-demethoxygeldanamycin (17-AAG) that were clinically ineffective, second generation inhibitor AUY922 has greater solubility and efficacy. Here, transcriptomic and proteomic analyses of patient-derived PCa explants identified cytoskeletal organization as highly enriched with AUY922 treatment. Validation in PCa cell lines revealed that AUY922 caused marked alterations to cell morphology, and suppressed cell motility and invasion compared to vehicle or 17-AAG, concomitant with dysregulation of key extracellular matrix proteins such as fibronectin (FN1). Interestingly, while the expression of FN1 was increased by AUY922, FN1 secretion was significantly decreased. This resulted in cytosolic accumulation of FN1 protein within late endosomes, suggesting that AUY922 disrupts vesicular secretory trafficking pathways. Depletion of FN1 by siRNA knockdown markedly reduced the invasive capacity of PCa cells, phenocopying AUY922. These results highlight a novel mechanism of action for AUY922 beyond its established effects on cellular mitosis and survival and, furthermore, identifies extracellular matrix cargo delivery as a potential therapeutic target for the treatment of aggressive PCa
Hormone-sensing cells require Wip1 for paracrine stimulation in normal and premalignant mammary epithelium
10.1186/bcr3381Breast Cancer Research15
Image1_Therian origin of INSL3/RXFP2-driven testicular descent in mammals.tiff
Introduction: During early development in most male mammals the testes move from a position near the kidneys through the abdomen to eventually reside in the scrotum. The transabdominal phase of this migration is driven by insulin-like peptide 3 (INSL3) which stimulates growth of the gubernaculum, a key ligament connecting the testes with the abdominal wall. While all marsupials, except the marsupial mole (Notoryctes typhlops), have a scrotum and fully descended testes, it is unclear if INSL3 drives this process in marsupials especially given that marsupials have a different mechanism of scrotum determination and position relative to the phallus compared to eutherian mammals.Methods: To understand if INSL3 plays a role in marsupial testicular descent we have sequenced and curated the INSL3 gene and its receptor (RXFP2) in a range of marsupials representing every order. Furthermore, we looked at single cell RNA-seq and qPCR analysis of INSL3 in the fat-tailed dunnart testis (Sminthopsis crassicaudata) to understand the location and timing of expression during development.Results: These data show a strong phylogenetic similarity between marsupial and eutherian orthologues, but not with monotreme INSL3s which were more similar to the ancestral RLN3 gene. We have also shown the genomic location of INSL3, and surrounding genes is conserved in a range of marsupials and eutherians. Single cell RNA-seq and qPCR data show that INSL3 mRNA is expressed specifically in Leydig cells and expressed at higher levels during the testicular descent phase in developing marsupials.Discussion: Together, these data argue strongly for a therian origin of INSL3 mediated testicular descent in mammals and suggests that a coordinated movement of the testes to the abdominal wall may have preceded externalization in marsupials and therian mammals.</p
Expression analysis of rare cellular subsets: Direct RT-PCR on limited cell numbers obtained by FACS or soft agar assays
10.2144/000114019BioTechniques544208-211BTNQ
Impact of Chronic Multi-Generational Exposure to an Environmentally Relevant Atrazine Concentration on Testicular Development and Function in Mice
A common herbicide, atrazine, is associated with poor health. Atrazine acts as an endocrine disruptor at supra-environmental levels. Little research, however, has been conducted regarding chronic exposure to environmental atrazine concentrations across generations. This study utilized comprehensive endpoint measures to investigate the effects of chronic exposure to a conservative atrazine concentration (0.02 ng/mL), measured in Australian waterways, on male mice fertility across two generations. Mice were exposed through the maternal line, from the pre-conception period and through the F1 and F2 generations until three or six months of age. Atrazine did not impact sperm function, testicular morphology nor germ cell parameters but did alter the expression of steroidogenic genes in the F1, down-regulating the expression of Cyp17a1 (Cytochrome P450 family 17, subfamily A member 1; p = 0.0008) and Ddx4 (DEAD-box helicase 4; p = 0.007), and up-regulating the expression of Star (Steroidogenic acute regulatory protein; p = 0.017). In the F2, atrazine induced up-regulation in the expression of Star (p = 0.016). The current study demonstrates that chronic exposure to an environmentally relevant atrazine concentration perturbs testicular steroid-associated gene expression that varies across generations. Future studies through the paternal and combined parental lineages should be undertaken to further elucidate the multigenerational effects of atrazine on male fertility
Androgen and Estrogen Receptors in Breast Cancer Coregulate Human UDP-Glucuronosyltransferases 2B15 and 2B17.
Glucuronidation is an enzymatic process that terminally inactivates steroid hormones, including estrogens and androgens, thereby influencing carcinogenesis in hormone-dependent cancers. While estrogens drive breast carcinogenesis via the estrogen receptor alpha (ERα), androgens play a critical role as prohormones for estrogen biosynthesis and ligands for the androgen receptor (AR). In this study, the expression and regulation of two androgen-inactivating enzymes, the UDP-glucuronosyltransferases UGT2B15 and UGT2B17, was assessed in breast cancer. In large clinical cohorts, high UGT2B15 and UGT2B17 levels positively influenced disease-specific survival in distinct molecular subgroups. Expression of these genes was highest in cases positive for ERα. In cell line models, ERα, AR, and the transcription factor FOXA1 cooperated to increase transcription via tandem binding events at their proximal promoters. ERα activity was dependent on FOXA1, facilitated by AR activation, and potently stimulated by estradiol as well as estrogenic metabolites of 5α-dihydrotestosterone. AR activity was mediated via binding to an estrogen receptor half-site 3' to the FOXA1 and ERα-binding sites. Although AR and FOXA1 bound the UGT promoters in AR-positive/ERα-negative breast cancer cell lines, androgen treatment did not influence basal transcription levels. Ex vivo culture of human breast tissue and ERα+ tumors provided evidence for upregulation of UGT2B15 and UGT2B17 by estrogen or androgen treatment. ERα binding was evident at the promoters of these genes in a small cohort of primary tumors and distant metastases. Collectively, these data provide insight into sex steroid receptor-mediated regulation of androgen-inactivating enzymes in ERα+ breast cancer, which may have subtype-specific consequences for disease progression and outcomes. Cancer Res; 76(19); 5881-93. ©2016 AACR