52 research outputs found

    The non-photosynthetic, pathogenic green alga Helicosporidium sp. has retained a modified, functional plastid genome

    Get PDF
    A fragment of the Helicosporidium sp. (Chlorophyta: Trebouxiophyceae) plastid genome has been sequenced. The genome architecture was compared to that of both a non-photosynthetic relative (Prototheca wickerhamii) and a photosynthetic relative (Chlorella vulgaris). Comparative genomic analysis indicated that Helicosporidium and Prototheca are closely related genera. The analyses also revealed that the Helicosporidium sp. plastid genome has been rearranged. In particular, two ribosomal protein-encoding genes (rpl19 and rps23) appeared to have been transposed, or lost from the Helicosporidium sp. plastid genome. RT-PCR reactions demonstrated that the retained plastid genes were transcribed, suggesting that, despite rearrangement(s), the Helicosporidium sp. plastid genome has remained functional. The modified plastid genome architecture is a novel apomorphy that indicates that the Helicosporidia are highly derived green algae, more so than Prototheca spp. As such, they represent a promising model to study organellar genome reorganizations in parasitic protists

    Oomycete Metabarcoding Reveals the Presence of Lagenidium spp. in Phytotelmata

    Get PDF
    The oomycete genus Lagenidium, which includes the mosquito biocontrol agent L. giganteum, is composed of animal pathogens, yet is phylogenetically closely related to the well characterized plant pathogens Phytophthora and Pythium spp. These phylogenetic affinities were further supported by the identification of canonical oomycete effectors in the L. giganteum transcriptome, and suggested, mirroring the endophytic abilities demonstrated in entomopathogenic fungi, that L. giganteum may have similarly retained capacities to establish interactions with plant tissues. To test this hypothesis, culture-independent, metabarcoding analyses aimed at detecting L. giganteum in bromeliad phytotelmata (a proven mosquito breeding ground) microbiomes were performed. Two independent and complementary microbial detection strategies based on the amplification of cox1 DNA barcodes were used and produced globally concordant outcomes revealing that two distinct Lagenidium phylotypes are present in phytotelmata. A total of 23,869 high quality reads were generated from four phytotelmata, with 52%, and 11.5%, corresponding to oomycetes, and Lagenidium spp., barcodes, respectively. Newly-designed Lagenidium-specific cox1 primers combined with cloning/Sanger sequencing produced only Lagenidium spp. barcodes, with a majority of sequences clustering with L. giganteum. High throughput sequencing based on a Single Molecule Real Time (SMRT) approach combined with broad range cox1 oomycete primers confirmed the presence of L. giganteum in phytotelmata, but indicated that a potentially novel Lagenidium phylotype (closely related to L. humanum) may represent one of the most prevalent oomycetes in these environments (along with Pythium spp.). Phylogenetic analyses demonstrated that all detected Lagenidium phylotype cox1 sequences clustered in a strongly-supported, monophyletic clade that included both L. giganteum and L. humanum. Therefore, Lagenidium spp. are present in phytotelmata microbiomes. This observation provides a basis to investigate potential relationships between Lagenidium spp. and phytotelma-forming plants, especially in the absence of water and/or invertebrate hosts, and reveals phytotelmata as sources for the identification of novel Lagenidium isolates with potential as biocontrol agents against vector mosquitoes

    Phylogenetic analysis identifies the invertebrate pathogen Helicosporidium sp. as a green alga (Chlorophyta)

    Get PDF
    Historically, the invertebrate pathogens of the genus Helicosporidium were considered to be either protozoa or fungi, but the taxonomic position of this group has not been considered since 1931. Recently, a Helicosporidium sp., isolated from the blackfly Simulium jonesi Stone & Snoddy (Diptera: Simuliidae), has been amplified in the heterologous host Helicoverpa zea. Genomic DNA has been extracted from gradient-purified cysts. The 185, 28S and 5.8S regions of the Helicosporidium rDNA, as well as partial sequences of the actin and beta-tubulin genes, were amplified by PCR and sequenced. Comparative analysis of these nucleotide sequences was performed using neighbour-joining and maximum-parsimony methods. All inferred phylogenetic trees placed Helicosporidium sp. among the green algae (Chlorophyta), and this association was supported by bootstrap and parsimony jackknife values. Phylogenetic analysis focused on the green algae depicted Helicosporidium sp. as a close relative of Prototheca wickerhamii and Prototheca zopfii (Chlorophyta, Trebouxiophyceae), two achlorophylous, pathogenic green algae. On the basis of this phylogenetic analysis, Helicosporidium sp. is clearly neither a protist nor a fungus, but appears to be the first described algal invertebrate pathogen. These conclusions lead us to propose the transfer of the genus Helicosporidium to Chlorophyta, Trebouxiophyceae

    Comparison of plastid 16S rDNA (rrn16) genes from Helicosporidium spp.: evidence supporting the reclassification of Helicosporidia as green algae (Chlorophyta)

    Get PDF
    The Helicosporidia are invertebrate pathogens that have recently been identified as non-photosynthetic green algae (Chlorophyta). In order to confirm the algal nature of the genus Helicosporidium, the presence of a retained chloroplast genome in Helicosporidia cells was investigated. Fragments homologous to plastid 16S rRNA (rrn16) genes were amplified successfully from cellular DNA extracted from two different Helicosporidium isolates. The fragment sequences are 1269 and 1266 bp long, are very AT-rich (60.7 %) and are similar to homologous genes sequenced from non-photosynthetic green algae. Maximum-parsimony, maximum-likelihood and neighbour-joining methods were used to infer phylogenetic trees from an rrn16 sequence alignment. All trees depicted the Helicosporidia as sister taxa to the non-photosynthetic, pathogenic alga Prototheca zopfii. Moreover, the trees identified Helicosporidium spp. as members of a clade that included the heterotrophic species Prototheca spp. and the mesotrophic species Chlorella protothecoides. The clade is always strongly supported by bootstrap values, suggesting that all these organisms share a most recent common ancestor. Phylogenetic analyses inferred from plastid 16S rRNA genes confirmed that the Helicosporidia are non-photosynthetic green algae, close relatives of the genus Prototheca (Chlorophyta, Trebouxiophyceae). Such phylogenetic affinities suggest that Helicosporidium spp. are likely to possess Prototheca-like organelles and organelle genomes

    Surfactant-Associated Bacteria in the Near-Surface Layer of the Ocean

    Get PDF
    Certain marine bacteria found in the near-surface layer of the ocean are expected to play important roles in the production and decay of surface active materials; however, the details of these processes are still unclear. Here we provide evidence supporting connection between the presence of surfactant-associated bacteria in the near-surface layer of the ocean, slicks on the sea surface, and a distinctive feature in the synthetic aperture radar (SAR) imagery of the sea surface. From DNA analyses of the in situ samples using pyrosequencing technology, we found the highest abundance of surfactant-associated bacterial taxa in the near-surface layer below the slick. Our study suggests that production of surfactants by marine bacteria takes place in the organic-rich areas of the water column. Produced surfactants can then be transported to the sea surface and form slicks when certain physical conditions are met. This finding has potential applications in monitoring organic materials in the water column using remote sensing techniques. Identifying a connection between marine bacteria and production of natural surfactants may provide a better understanding of the global picture of biophysical processes at the boundary between the ocean and atmosphere, air-sea exchange of greenhouse gases, and production of climate-active marine aerosols

    Relative Abundance of Bacillus spp., Surfactant-Associated Bacterium Present in a Natural Sea Slick Observed by Satellite SAR Imagery over the Gulf of Mexico

    Get PDF
    The damping of short gravity-capillary waves (Bragg waves) due to surfactant accumulation under low wind speed conditions results in the formation of natural sea slicks. These slicks are detectable visually and in synthetic aperture radar satellite imagery. Surfactants are produced by natural life processes of many marine organisms, including bacteria, phytoplankton, seaweed, and zooplankton. In this work, samples were collected in the Gulf of Mexico during a research cruise on the R/V F.G. Walton Smith to evaluate the relative abundance of Bacillus spp., surfactant-associated bacteria, in the sea surface microlayer compared to the subsurface water at 0.2 m depth. A method to reduce potential contamination of microlayer samples during their collection on polycarbonate filters was implemented and advanced, including increasing the number of successive samples per location and changing sample storage procedures. By using DNA analysis (real-time polymerase chain reaction) to target Bacillus spp., we found that in the slick areas, these surfactant-associated bacteria tended to reside mostly in subsurface waters, lending support to the concept that the surfactants they may produce move to the surface where they accumulate under calm conditions and enrich the sea surface microlayer

    Relative Abundance of Bacillus spp., Surfactant-Associated Bacterium Present in a Natural Sea Slick Observed by Satellite SAR Imagery over the Gulf of Mexico

    Get PDF
    The damping of short gravity-capillary waves (Bragg waves) due to surfactant accumulation under low wind speed conditions results in the formation of natural sea slicks. These slicks are detectable visually and in synthetic aperture radar satellite imagery. Surfactants are produced by natural life processes of many marine organisms, including bacteria, phytoplankton, seaweed, and zooplankton. In this work, samples were collected in the Gulf of Mexico during a research cruise on the R/V F.G. Walton Smith to evaluate the relative abundance of Bacillus spp., surfactant-associated bacteria, in the sea surface microlayer compared to the subsurface water at 0.2 m depth. A method to reduce potential contamination of microlayer samples during their collection on polycarbonate filters was implemented and advanced, including increasing the number of successive samples per location and changing sample storage procedures. By using DNA analysis (real-time polymerase chain reaction) to target Bacillus spp., we found that in the slick areas, these surfactant-associated bacteria tended to reside mostly in subsurface waters, lending support to the concept that the surfactants they may produce move to the surface where they accumulate under calm conditions and enrich the sea surface microlayer

    DNA Analysis of Surfactant-Associated Bacteria in a Natural Sea Slick Observed by TerraSAR-X and RADARSAT-2 Over the Gulf of Mexico

    Get PDF
    The damping of short gravity-capillary waves (Bragg waves) due to surfactant accumulation under low wind speed conditions results in the formation of natural sea slicks. These slicks are detectable visually and in synthetic aperture radar (SAR) imagery. Surfactants are produced by natural life processes of many organisms, such as bacteria, phytoplankton, seaweed, and zooplankton. By using DNA analysis, we are able to determine the relative abundance of surfactant-associated bacteria in the sea surface microlayer and the subsurface water column. A method to reduce contamination of samples during collection, storage, and analysis (Kurata et al., 2016; Hamilton et al., 2015) has been implemented and advanced by increasing the number of successive samples and changing sample storage procedures. In this work, microlayer samples have been collected in the Gulf of Mexico during a research cruise (LASER) on the R/V F.G. Walton Smith during RADARSAT-2 and TerraSAR-X overpasses. We found that in slick areas surfactant-associated bacteria mostly reside in subsurface waters, producing surfactants, which move to the surface, accumulate on and enrich the sea surface microlayer. This is consistent with previous studies (Kurata et al., 2016; Hamilton et al., 2015) and with the experimental results of Cunliffe et al. (2010)

    Analysis of surfactant-associated bacteria in the sea surface microlayer using deoxyribonucleic acid sequencing and synthetic aperture radar

    Get PDF
    The sea surface microlayer (SML) is the upper 1 mm of the ocean, where Earth’s biogeochemical processes occur between the ocean and atmosphere. It is physicochemically distinct from the water below and highly variable in space and time due to changing physical conditions. Some microorganisms influence the composition of the SML by producing surfactants for biological functions that accumulate on the surface, decrease surface tension, and create slicks. Slicks can be visible to the eye and in synthetic aperture radar (SAR) satellite imagery. This study focuses on surfactant-associated bacteria in the near-surface layer and their role in slick formation where oil is present

    Helicosporidium

    No full text
    The Encyclopedia of Entomology brings together the talents of over 350 distinguished entomologists from 36 countries to provide a detailed, global overview of insects and their close relatives, including taxonomy, behavior, ecology, physiology, history, and management. All the major groups of arthropods are treated, as are many important families and individual species. The Encyclopedia also covers physiology, genetics, ecology, behavior, insect relationships with people, medical entomology, and pest management. Detailed listings are also complemented by more than 1100 illustrations. Featured in this important work are unique biographical sketches of the hundreds of entomologists who have made important contributions to the discipline since its origin. Presented in three volumes and including a fully searchable and easily accessed online version, theEncyclopedia of Entomology is the most complete reference work in this field. In addition to being a must for Entomology departments around the world, the Encyclopedia also serves as a handy reference for scientists and students in related areas of science such as agronomy, animal science, botany, ecology, human disease, evolutionary biology, forestry, genetics, horticulture, parasitology, toxicology and zoology.https://nsuworks.nova.edu/cnso_bio_facbooks/1011/thumbnail.jp
    • …
    corecore