26 research outputs found

    Joint Practice Guidelines for Radionuclide Lymphoscintigraphy for Sentinel Node Localization in Oral/Oropharyngeal Squamous Cell Carcinoma

    Get PDF
    Involvement of the cervical lymph nodes is the most important prognostic factor for patients with oral/oropharyngeal squamous cell carcinoma (OSCC), and the decision of whether to electively treat patients with clinically negative necks remains a controversial topic. Sentinel node biopsy (SNB) provides a minimally invasive method for determining the disease status of the cervical node basin, without the need for a formal neck dissection. This technique potentially improves the accuracy of histologic nodal staging and avoids overtreating three-quarters of this patient population, minimizing associated morbidity. The technique has been validated for patients with OSCC, and larger-scale studies are in progress to determine its exact role in the management of this patient population. This document is designed to outline the current best practice guidelines for the provision of SNB in patients with early-stage OSCC, and to provide a framework for the currently evolving recommendations for its use. Preparation of this guideline was carried out by a multidisciplinary surgical/nuclear medicine/pathology expert panel under the joint auspices of the European Association of Nuclear Medicine (EANM) Oncology Committee and the Sentinel European Node Trial (SENT) Committee

    Joint practice guidelines for radionuclide lymphoscintigraphy for sentinel node localization in oral/oropharyngeal squamous cell carcinoma

    Get PDF
    Involvement of the cervical lymph nodes is the most important prognostic factor for patients with oral/oropharyngeal squamous cell carcinoma (OSCC), and the decision whether to electively treat patients with clinically negative necks remains a controversial topic. Sentinel node biopsy (SNB) provides a minimally invasive method of determining the disease status of the cervical node basin, without the need for a formal neck dissection. This technique potentially improves the accuracy of histological nodal staging and avoids over-treating three-quarters of this patient population, minimizing associated morbidity. The technique has been validated for patients with OSCC, and larger-scale studies are in progress to determine its exact role in the management of this patient population. This article was designed to outline the current best practice guidelines for the provision of SNB in patients with early-stage OSCC, and to provide a framework for the currently evolving recommendations for its use. These guidelines were prepared by a multidisciplinary surgical/nuclear medicine/pathology expert panel under the joint auspices of the European Association of Nuclear Medicine (EANM) Oncology Committee and the Sentinel European Node Trial Committee

    Metabolite profiling in retinoblastoma identifies novel clinicopathological subgroups

    Get PDF
    BACKGROUND: Tumour classification, based on histopathology or molecular pathology, is of value to predict tumour behaviour and to select appropriate treatment. In retinoblastoma, pathology information is not available at diagnosis and only exists for enucleated tumours. Alternative methods of tumour classification, using noninvasive techniques such as magnetic resonance spectroscopy, are urgently required to guide treatment decisions at the time of diagnosis. METHODS: High-resolution magic-angle spinning magnetic resonance spectroscopy (HR-MAS MRS) was undertaken on enucleated retinoblastomas. Principal component analysis and cluster analysis of the HR-MAS MRS data was used to identify tumour subgroups. Individual metabolite concentrations were determined and were correlated with histopathological risk factors for each group. RESULTS: Multivariate analysis identified three metabolic subgroups of retinoblastoma, with the most discriminatory metabolites being taurine, hypotaurine, total-choline and creatine. Metabolite concentrations correlated with specific histopathological features: taurine was correlated with differentiation, total-choline and phosphocholine with retrolaminar optic nerve invasion, and total lipids with necrosis. CONCLUSIONS: We have demonstrated that a metabolite-based classification of retinoblastoma can be obtained using ex vivo magnetic resonance spectroscopy, and that the subgroups identified correlate with histopathological features. This result justifies future studies to validate the clinical relevance of these subgroups and highlights the potential of in vivo MRS as a noninvasive diagnostic tool for retinoblastoma patient stratification
    corecore